Visible-Light-Promoted Oxidative [4 + 2] Cycloadditions of Aryl Silyl Enol Ethers

Bo Yang and Zhan Lu*
Department of Chemistry, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China

S Supporting Information

Abstract

Visible-light-promoted oxidative [4 + 2] cycloadditions of $\varepsilon, 3$-unsaturated silyl enol ethers have been developed to efficiently and diastereoselectively construct polycyclic skeletons under mild conditions. The diastereoselectivities were dependent on the stereoconfiguration of silyl enol ether, substitutions on the link, as well as electric

99\% yield single isomer properties of substitutions on aryl rings. The intermediates could be trapped by TEMPO, oxygen or methanol. Mechanistic studies indicated the reaction was initiated by one-electron oxidation of the silyl enol ether.

Polycyclic cyclohexanone is a core skeleton in natural products (Scheme 1). ${ }^{1}$ Biogenetically, it can be hypothesized that the phenyl substituted enols formed by enolization of $\varepsilon, 3$-unsaturated 1,3 -dicarbonyl compounds undergo an intramolecular cyclization followed by oxidation of intermediates. ${ }^{1 g}$

Oxidative $[4+2]$ cycloaddition is one of the useful methods to construct this structure (Scheme 2). The Diels-Alder reactions of both electron-rich dienes and alkenes are forbidden. When the electron-rich diene was oxidized to be radical cation whose HOMO did match with the LUMO of electron-rich alkenes, the formal [$4+2$] reaction could undergo smoothly following by one-electron oxidation of the intermediate to give the cyclization product. Snider reported an elegant oxidative cyclization of $\varepsilon, 3$-unsaturated silyl enol ethers using the stoichiometric amount of copper(II) or cerium(IV). ${ }^{2}$ Visible light as a clean reagent has been shown wide utility in organic synthesis. ${ }^{3}[4+2]$ Cycloaddition reactions could be also promoted by visible light through a redox-neutral pathway. ${ }^{4}$ However, to the best of our knowledge, visible light promoted oxidative [4 + 2] cycloaddition reactions are still limited. Our group has previously reported a visible light-promoted nitro-initiated [3+2] cycloaddition via one-electron reduction process. ${ }^{5}$ Inspired by the biogenetic process and oxidative cycloadditions, here, we reported a visible-light-promoted oxidative [4+2] cycloaddition of $\varepsilon, 3-$ unsaturated silyl enol ethers initiated by one-electron oxidation process.

We chose silyl enol 2a as a model substrate ${ }^{6}$ which could be easily obtained from the corresponding phenyl ketone 1a through deprotonation by LDA and then trapped by trifluoromethanesulfonic acid tert-butyldimethylsilyl ester (TBDMSOTf) (Scheme 3). The synthesis using known procedures was starting from commercially available tetrahy-dro-2-pyran through bromination, oxidation ${ }^{7}$ and wittig reaction ${ }^{8}$ to afford $\mathbf{S} 2$. The corresponding Grignard reagent prepared by $\mathbf{S 2}$ and meganisum turnings in $\mathrm{Et}_{2} \mathrm{O}$ reacted with acyl chloride in the prescence of CuI to give 1a. Another
strategy is the reactions of the corresponding Grignard reagent with arylaldehydes following oxidation by PCC to give $\mathbf{1 a}$.

The reaction of $\varepsilon, 3$-unsaturated enol silyl ether 2 a in the presence of $\mathrm{Ru}(\mathrm{bpy})_{3}\left(\mathrm{PF}_{6}\right)_{2}$ as photosentisizer and dioxygen as a terminal oxidant using $4 \AA \mathrm{MS}$ as a desiccant under the irradiation of 18 W CFL in a solution of methanol afforded the desired cycloaddition product 3a but only in 8% yield (entry 1 , Table 1). Various oxidants such as TBHP, m-CPBA, $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$, $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$ were used instead of dioxygen, $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$ is particularly suitable to afford 3a in 91\% yield with 5:1 dr (entry 5). ${ }^{9}$ Using iridium-photosentisizers or organic dyes instead of $\mathrm{Ru}(\mathrm{bpy})_{3}\left(\mathrm{PF}_{6}\right)_{2}$, rare products were observed (entries 6-9). Interestingly, the $\mathrm{Fe}(\mathrm{phen})_{3}\left(\mathrm{PF}_{6}\right)_{2}$ as a visible light photosentisizer ${ }^{10}$ could promote the cycloaddition to give 3 a in 23% yield (entry 10). Additionally, acetone, acetonitrile, dichloromethane, dimethylformamide, and dimethyl sulfoxide were used as solvents to dramatically inhibit reactions. The control experiments indicated that all essentials such as photosentisier, $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$, or visible light were necessary.

With optimal conditions in hands, the scope of the substrates was shown in Table 2. The reaction of para-mehoxy substrate $\mathbf{2 b}$ afforded $\mathbf{3 b}$ in 75% yield with 7:1 dr. Due to difficult separation of two diastereoisomers, the condensation reaction of the crude mixture with 2,4-dinitrophenylhydrazine followed by filtrated and washed by methanol gave the pure major condensation product $\mathbf{4 b}$ in 61% isolated yield. When metamethoxyphenyl silyl enol ether 2 c was subjected to this process, two regioisomers were isolated in 66% and 23% yields, respectively, with excellent diastereoselectivities. Steric hindered othro-methoxy substitution 2d was also tolerated to generate 3d in 55% yield with $20: 1 d r$. Various silyl protecting groups were investigated that the larger silyl groups were used,

[^0]Scheme 1. Selected Natural Products Containing Polycyclic Cyclohexanone

Scheme 2. Oxidative [4+2] Cycloadditions

Scheme 3. Synthesis of Silyl Enol Ether 2

the higher yields and diastereoselectivities were observed. Morever, halides were also tolerated to give the corresponding cyclization products $3 \mathrm{f}-\mathrm{g}$ in $58-64 \%$ yield with moderate diastereoselectivities. The pure major diastereoisomers could be obtained after condensation with 2,4-dinitrophenylhydrazine in $40-49 \%$ yields. An excellent diastereoselectivity can be achieved in the formation of 2,5-dimethoxy product 2 h in 93% yield. The reaction of 2-naphthyl silyl enol ether gave $3 \mathbf{i}$ in 32% yield. Notably, 2 -indyl silyl enol ethers were applicable to deliver $3 \mathbf{j}-\mathrm{k}$ in high yields with one single diastereoisomer. Using stoichiometric CAN or visible light iron-photocatalyst, reactions of $\mathbf{2 j}$ underwent smoothly, however, were not efficient. The diester (31) or a methyl substitution (3m) on the link dramatically diminished the diastereselectivity. The substitutions on the link might decelerate the ring-closing step which delivered divergent diastereoselectivities. The stereochemistry was determined by compared the data of known compounds 3 m and $3 \mathrm{~m}^{\prime}$ to those reported in the literature. ${ }^{2}$ Due to a similar reason, the reaction of $2 \mathbf{n}$ was too messy to identify the diastereoselectivity, and only the bicyclohexane product $3 \mathbf{n}$ was isolated in 13% yield. The δ, ε-unsaturated silyl

Table 1. Optimizations

 2a				
entry	photocatalyst	oxidant	solvent	yield (\%) ${ }^{\text {a }}$
1	$\mathrm{Ru}(\mathrm{bpy})_{3}\left(\mathrm{PF}_{6}\right)_{2}$	O_{2}	MeOH	8
2	$\mathrm{Ru}(\mathrm{bpy})_{3}\left(\mathrm{PF}_{6}\right)_{2}$	TBHP	MeOH	0
3	$\mathrm{Ru}(\mathrm{bpy})_{3}\left(\mathrm{PF}_{6}\right)_{2}$	m-CPBA	MeOH	7
4	$\mathrm{Ru}(\mathrm{bpy})_{3}\left(\mathrm{PF}_{6}\right)_{2}$	$\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$	MeOH	21
5	$\mathrm{Ru}(\mathrm{bpy})_{3}\left(\mathrm{PF}_{6}\right)_{2}$	$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$	MeOH	$91^{\text {b }}$
6	$\operatorname{Ir}(\mathrm{ppy})_{3}$	$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$	MeOH	0
7	$\operatorname{Ir}(\mathrm{ppy})_{2}(\mathrm{dtbbpy}) \mathrm{PF}_{6}$	$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$	MeOH	6
8	Rosebengal	$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$	MeOH	0
9	EosinY	$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$	MeOH	<5
10	$\mathrm{Fe}(\mathrm{phen})_{3}\left(\mathrm{PF}_{6}\right)_{2}$	$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$	MeOH	23
11	$\mathrm{Ru}(\mathrm{bpy})_{3}\left(\mathrm{PF}_{6}\right)_{2}$	$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$	DCM	<5
12	$\mathrm{Ru}(\mathrm{bpy})_{3}\left(\mathrm{PF}_{6}\right)_{2}$	$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$	MeCN	9
13	$\mathrm{Ru}(\mathrm{bpy})_{3}\left(\mathrm{PF}_{6}\right)_{2}$	$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$	acetone	0
14	$\mathrm{Ru}(\mathrm{bpy})_{3}\left(\mathrm{PF}_{6}\right)_{2}$	$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$	DMF	0
15	$\mathrm{Ru}(\mathrm{bpy})_{3}\left(\mathrm{PF}_{6}\right)_{2}$	$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$	DMSO	<5
$16^{\text {c }}$	$\mathrm{Ru}(\mathrm{bpy})_{3}\left(\mathrm{PF}_{6}\right)_{2}$	$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$	MeOH	0
17	-	$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$	MeOH	0
18	$\mathrm{Ru}(\mathrm{bpy})_{3}\left(\mathrm{PF}_{6}\right)_{2}$	-	MeOH	0

${ }^{a}$ Yields were determined by ${ }^{1} \mathrm{H}$ NMR using mesitylene as an internal standard. ${ }^{b}$ Isolated yield with 5:1 dr. ${ }^{c}$ Without light.
enol ether 20 did be converted to α-mehoxylation product 50 in 33% yield without any cyclic product. These results suggested that a five-membered ring was easily formed, and the newly formed radical could be oxidized to cation if cyclization reaction did not efficiently occur. The reaction of 2 p containing 1,2 -disubstituted alkene afforded $\mathbf{3 p}$ in 39% yield with $12: 1 d r^{2}$

Various polycycles 6-8 could be easily obtained from the product $3 \mathbf{j}$ by vinylation or removal of the carbonyl group (Scheme 4).

To gain further understanding of the mechanism, some experiments conducted were showed in Scheme 5. The radical intermediate was captured by addition of TEMPO to afford 9 in 21% yield which elucidated that one-electron oxidation of silyl enol to radical cation was the initiated step. The reaction of silyl enol ether $\mathbf{1 0}$ with oxygen in the presence of $\mathrm{Ru}(\mathrm{bpy})_{3}\left(\mathrm{PF}_{6}\right)_{2}$ in a solution of acetonitrile under the irradiation of 18 W CFL afforded the silyl peroxide 11 in 82% yield. ${ }^{11}$ It was possible that the excited state of $\mathrm{Ru}(\mathrm{bpy})_{3}\left(\mathrm{PF}_{6}\right)_{2}$ might oxidize the silyl enol; however, direct oxygen-participated oxidation of silyl enol could not be ruled out. Interestingly, the reaction of a Z / E mixture of 2 j was carried out to afford the cycloaddition products $3 \mathbf{j}$ and $3 \mathbf{j}^{\prime}$ in 99% combined yield with $4: 1$ diastereoselectivity which

Table 2. Substrate Scope ${ }^{a}$

(61\%)
${ }^{a}$ Standard conditions: 0.3 mmol of $2,1.5 \mathrm{~mol} \%$ of $\mathrm{Ru}(\mathrm{bpy})_{3}\left(\mathrm{PF}_{6}\right)_{2}, 3$ equiv of $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{~S}_{2} \mathrm{O}_{8}, 100 \mathrm{wt} \%$ of $4 \AA$ MS in a solution of $\mathrm{MeOH}(0.05 \mathrm{M})$ under the irradiation of 18 W CFL for 17 h . Isolated yield of products $\mathbf{3}$ or $\mathbf{5 o}$. The data in the parentheses is the isolated yield of the corresponding compound 4.
indicated that the new formed radical cation was not exclusively distonic and did not easily undergo the configuration-reversible reaction. The reaction of $\mathbf{2 a}$ was performed for 40 min to afford 3a in 3% yield. Additionally, the same reaction was conducted for 40 min then stirred without light for 16 h to give 3 a in 5% yield. These fluorescence quenching experiments indicated that reaction is visible light photocatalysis, however, the radical chain reaction cannot exclusively be ruled out.

On the basis of above results and others previously reported in literatures, plausible mechanisms for the oxidative [4 + 2] reactions are proposed in Scheme 6. The $[\mathrm{Ru}]^{\mathrm{II}}$ obsorbs the visible light to produce excited state $*[\mathrm{Ru}]^{\mathrm{II}}$ which could be oxidized by persulfate to generate sulfate radical anion 12 and $[\mathrm{Ru}]^{\mathrm{III}}$. The oxidation potential of 2 measured is +1.424 V (SCE) which is higher than the oxidation potential of $\mathrm{Ru}^{\text {III } / / ~}$ $\mathrm{Ru}^{\text {II }}(1.29 \mathrm{~V}, \mathrm{SCE})$. This means that 2 could not be oxidized by $\mathrm{Ru}^{\text {III }}$ directly. Oxidation of silyl enol by $\mathbf{1 2}$ can lead to radical cation 13 which can undergo intramolecular radical cyclization to give 17. Either way, the newly formed radical species 13 is
susceptible to be oxidized by sulfate radical anion 12 to give the methoxylation product followed by nucleophilic trapping by methanol. Further radical cyclization following oxidation of 17 gave 3a followed by elimination of proton. Another pathway involving oxidation of $\mathbf{1 7}$ to the corresponding cation followed by cyclization could not be ruled out conclusively; however, nucleophilic trapping of 17 with methanol was not observed. The stereochemical information in the reactants was mainly retained in the products. This phenomenon could be explained by the model proposed by Snider. ${ }^{2}$ In the three possible Newman configurations (Scheme 7), configuration a is more favorable for 13 because the number of gauche interactions are minimized.

In summary, visible-light-promoted oxidative [4 + 2] cycloadditions of $\varepsilon, 3$-unsaturated silyl enol ethers to access various polycyclic rings have been reported. This protocol features mild conditions and a broad scope without stoichiometric transition-metal oxidants. Additionally, some intermediates could be trapped by TEMPO, oxygen or

Scheme 4. Further Derivatizations

methanol to elucidate the mechanism. The diastereoselectivities were dependent on stereoconfiguration of silyl enol ether, substitutions on the link, as well as electric properties of substitutions on aryl rings.

EXPERIMENTAL SECTION

Ether, THF and toluene were distilled from sodium benzophenone ketyl prior to use. DCM and NEt_{3} were distilled from calcium hydride. Methanol was distilled from sodium. Lithium diisopropylamide (LDA) ($1.0 \mathrm{~mol} / \mathrm{L}$ in THF) and TBDMSOTf (Trifluoromethanesulfonic acid tert-butyldimethylsilyl ester) were purchased from Energy Chemical. The other commercial available chemicals were used as received. NMR spectra were recorded on a 400 or 300 MHz instrument. ${ }^{1} \mathrm{H}$ NMR chemical shifts were referenced to the solvent resonance (7.26 ppm), ${ }^{13} \mathrm{C}$ NMR chemical shifts were referenced to the solvent resonance
(77.00 ppm, CDCl_{3}). The following abbreviations (or combinations thereof) were used to explain multiplicities: $s=\operatorname{singlet}, \mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{m}=$ multiplet, $\mathrm{br}=$ broad, $\mathrm{q}=$ quadruplet. IR spectra were recorded on a FTIR spectrometer with diamond ATR accessory. Highresolution mass spectra (HRMS) were recorded on EI-TOF (electrospray ionization-time-of-flight). Element analyses were performed on Vario Micro elemental analyzer.

5-Bromopentanal. Prepared according to literature methods. ${ }^{12}$ To a solution of $\mathrm{BBr}_{3}(7.1 \mathrm{~mL}, 74 \mathrm{mmol})$ in dichloromethane (70 mL) was added dropwise tetrahydropyran $(17.2260 \mathrm{~g}, 200 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$. The mixture was then heated to reflux for 1 h . After allowing this mixture to cool, it was transferred via syringe to a flask containing PCC ($47.4232 \mathrm{~g}, 220 \mathrm{mmol}$) and dichloromethane $(200 \mathrm{~mL})$. The resulting dark solution was then heated to reflux for 1 h and allowed to cool. $\mathrm{Et}_{2} \mathrm{O}$ was added and the mixture was filtered through a pad of silica gel. The filtrate was evaporated in vacuo to give a crude brown liquid which was then distilled in vacuo to give $17.4690 \mathrm{~g}(53 \%$ yield $)$ of the title compound as a colorless oil. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.79$ $(\mathrm{t}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.43(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.50(\mathrm{td}, J=7.0,1.5 \mathrm{~Hz}$, $2 \mathrm{H}), 1.97-1.73(\mathrm{~m}, 4 \mathrm{H})$.

1-Bromo-6-methyl-hept-5-ene. Prepared according to the modified literature methods. ${ }^{13}$ Isopropyl triphenyl phosphonium bromide ${ }^{12}(52.3981 \mathrm{~g}, 136 \mathrm{mmol})$ was suspended in 200 mL THF. After cooling to $0{ }^{\circ} \mathrm{C}$, the mixture was added with $n-\mathrm{BuLi}(50.0 \mathrm{~mL}$, 2.4 M in hexane, 118.0 mmol). The simulation was stirred for 30 min at $0^{\circ} \mathrm{C}$ and for another 30 min at room temperature. The mixture was cooled to $-78{ }^{\circ} \mathrm{C}$ and slowly injected the aldehyde ($15.12 \mathrm{~g}, 90.9$ $\mathrm{mmol})$). After completion of the addition, the mixture was stirred for 10 min at $-78^{\circ} \mathrm{C}$, warmed to room temperature and then stirred at 30 ${ }^{\circ} \mathrm{C}$ overnight. Then petroleum ether was added and filtered through a pad of Celite, the residue was concentrated and distilled in vacuo to give the title compound $\left(13.4309 \mathrm{~g}, 77 \%\right.$ yield) as a colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $5.13-5.07(\mathrm{~m}, 1 \mathrm{H}), 3.41(\mathrm{t}, J=6.9 \mathrm{~Hz}$, $2 \mathrm{H}), 2.01(\mathrm{q}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.91-1.81(\mathrm{~m}, 2 \mathrm{H}), 1.69(\mathrm{~s}, 3 \mathrm{H}), 1.60$ (s, 3H), 1.51-1.42 (m, 2H).

General Procedure A for Synthesis of Aryl Ketones. ${ }^{13}$ 1-Bromo-6-methyl-hept-5-ene ($10 \mathrm{mmol}, 1.0$ equiv) was added to a suspension of Mg turnings ($360 \mathrm{mg}, 15 \mathrm{mmol}, 1.5$ equiv) in THF (12

Scheme 5. Mechanistic Studies

Scheme 6. Plausible Mechanism

Scheme 7. Primary Newman Models to Predict the Stereochemistry of Products

b
$\mathrm{mL})$ at room temperature. The resulting mixture was then refluxed for 40 min . In another flask, CuI (0.05 equiv) was added to a solution of benzoyl chloride (1.0 equiv) in THF (10 mL) at $-15{ }^{\circ} \mathrm{C}$. The Grignard reagent previously prepared was then added dropwise over 30 min at $-15^{\circ} \mathrm{C}$. The mixture was stirred at $-10^{\circ} \mathrm{C}$ for additionally 1 h and then allowed to warm to room temperature and stirred overnight. THF was removed under reduced pressure and the residue was treated with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ and aqueous $\mathrm{HCl}(1.0 \mathrm{M}, 10 \mathrm{~mL})$. The two layers were separated and the aqueous one was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$. The combined organic layers were washed with aqueous NaHCO_{3} (saturated), dried over MgSO_{4}, filtered, concentrated and purified by column chromatography $\left(\mathrm{SiO}_{2}, \mathrm{PE} / \mathrm{EtOAc}\right)$ to afford the corresponding ketones.

General Procedure B for Synthesis of Aryl Ketones. Prepared according to a previously reported literature method. ${ }^{13}$ 1-bromo-6-methyl-hept-5-ene ($10 \mathrm{mmol}, 1.0$ equiv) was added to a suspension of Mg turnings (1.5 equiv) in $\mathrm{Et}_{2} \mathrm{O}(12 \mathrm{~mL})$ at room temperature. The resulting mixture was then refluxed for 40 min . The mixture was cooled to room temperature and added dropwise to a solution of aryl aldehyde in $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$. The mixture was treated with saturated $\mathrm{NH}_{4} \mathrm{Cl}$, The two layers were separated and the aqueous one was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 20 \mathrm{~mL})$. The combined organic layers were dried over MgSO_{4}, filtered, concentrated and used directly without further purification. The residue was dissolved in DCM followed by adding PCC (1.5 equiv). The mixture was stirred at room temperature and monitored by TLC. $\mathrm{Et}_{2} \mathrm{O}$ was added and the mixture was filtered through a pad of silica gel. The residue was concentrated
and purified by column chromatography $\left(\mathrm{SiO}_{2}, \mathrm{PE} / \mathrm{EtOAc}\right)$ to afford the corresponding aryl ketones.

7-Methyl-1-phenyloct-6-en-1-one (1a). Prepared according to the general procedure A using benzoyl chloride ($1.5500 \mathrm{~g}, 11.0 \mathrm{mmol}$), 1-bromo-6-methyl-hept-5-ene ($1.9996 \mathrm{~g}, 10.4 \mathrm{mmol}$), Mg turnings ($0.3850 \mathrm{~g}, 16.0 \mathrm{mmol}$), CuI ($0.1052 \mathrm{~g}, 0.5 \mathrm{mmol}$) and THF (22 mL) as starting materials to afford $\mathbf{1 a}(1.2686 \mathrm{~g}, 5.9 \mathrm{mmol}, 56 \%$ yield $)$. IR ν 3061, 2928, 2857, 1687, 1598, $1450 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.99-7.93(\mathrm{~m}, 2 \mathrm{H}), 7.57-7.52(\mathrm{~m}, 1 \mathrm{H}), 7.45(\mathrm{t}, J=8.0 \mathrm{~Hz}$, 2H), $5.15-5.09(\mathrm{~m}, 1 \mathrm{H}), 2.96(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.03(\mathrm{q}, J=7.2 \mathrm{~Hz}$, $2 \mathrm{H}), 1.80-1.70(\mathrm{~m}, 2 \mathrm{H}), 1.69(\mathrm{~s}, 3 \mathrm{H}), 1.61(\mathrm{~s}, 3 \mathrm{H}), 1.47-38(\mathrm{~m}$, 2 H); ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 200.5,137.1,132.8,131.6$, 128.5, 128.0, 124.3, 38.5, 29.5, 27.8, 25.7, 24.0, 17.7; HRMS (EI-TOF) Calcd for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}[\mathrm{M}]^{+}: 216.1514$, found 216.1514.

1-(4-Methoxyphenyl)-7-methyloct-6-en-1-one (1b). Prepared according to the general procedure A using 4-methoxybenzoyl chloride ($1.7055 \mathrm{~g}, 10.0 \mathrm{mmol}$), 1-bromo-6-methyl-hept-5-ene ($1.9061 \mathrm{~g}, 10.0$ $\mathrm{mmol}), \mathrm{Mg}$ turnings $(0.3587 \mathrm{~g}, 15.0 \mathrm{mmol}), \mathrm{CuI}(0.1066 \mathrm{~g}, 0.5 \mathrm{mmol})$ and THF (22 mL) as starting materials to afford $\mathbf{1 b}(1.3062 \mathrm{~g}, 5.3$ $\mathrm{mmol}, 53 \%$ yield) as a colorless oil. IR $\nu 2931,2856,1677,1601,1511$, $1258 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.80(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 2 \mathrm{H})$, $6.78(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.03-4.98(\mathrm{~m}, 1 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 2.76(\mathrm{t}, J=$ $7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.91(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.68-1.52(\mathrm{~m}, 2 \mathrm{H}), 1.57(\mathrm{~s}$, $3 \mathrm{H}), 1.49(\mathrm{~s}, 3 \mathrm{H}), 1.36-1.24(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 198.2,162.9,130.9,129.8,129.7,124.0,113.2,54.8,37.7,29.2,27.5$, 25.3, 23.8, 17.2; HRMS (EI-TOF) Calcd for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{O}_{2}[\mathrm{M}]^{+}$: 246.1620, found 246.1618 .

1-(3-Methoxyphenyl)-7-methyloct-6-en-1-one (1c). Prepared according to the general procedure A using 3 -methoxybenzoyl chloride ($1.3695 \mathrm{~g}, 8.0 \mathrm{mmol}$), CuI ($0.0706 \mathrm{~g}, 0.37 \mathrm{mmol}$), Mg turnings ($0.2661 \mathrm{~g}, 11.1 \mathrm{mmol}$), 1-bromo-6-methyl-hept-5-ene ($1.2995 \mathrm{~g}, 6.8$ $\mathrm{mmol})$ and THF (18 mL) as starting materials to afford $\mathbf{1 c}(0.9570 \mathrm{~g}$, $3.9 \mathrm{mmol}, 57 \%$ yield) as a colorless oil. IR $\nu 2928,2857,1686,1594$, $1258 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.53(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H})$, $7.49(\mathrm{dd}, J=2.1,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{t}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{ddd}, J=$ $6.3,2.1,0.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.15-5.09(\mathrm{~m}, 1 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 2.94(\mathrm{t}, J=5.7$ $\mathrm{Hz}, 2 \mathrm{H}), 2.03(\mathrm{q}, J=5.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.79-1.70(\mathrm{~m}, 2 \mathrm{H}), 1.68(\mathrm{~s}, 3 \mathrm{H})$,
$1.61(\mathrm{~s}, 3 \mathrm{H}), 1.47-1.37(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 200.3, 159.8, 138.5, 131.6, 129.5, 124.3, 120.7, 119.3, 112.3, 55.4, 38.6, 29.5, 27.8, 25.7, 24.1, 17.7; HRMS (EI-TOF) Calcd for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{O}_{2}$ $[\mathrm{M}]^{+}: 246.1620$, found 246.1618.

1-(2-Methoxyphenyl)-7-methyloct-6-en-1-one (1d). Prepared according to the general procedure A using 2-methoxybenzoyl chloride ($1.2208 \mathrm{~g}, 7.1 \mathrm{mmol}$), 1-bromo-6-methyl-hept-5-ene ($1.3457 \mathrm{~g}, 7.0$ mmol), Mg turnings ($0.2644 \mathrm{~g}, 11.0 \mathrm{mmol}$), CuI ($0.0670 \mathrm{~g}, 0.35$ $\mathrm{mmol})$ and THF $(18 \mathrm{~mL})$ as starting materials to afford $\mathbf{1 d}(0.5288 \mathrm{~g}$, $2.1 \mathrm{mmol}, 30 \%$ yield) as a colorless oil. IR $\nu 2930,2856,1675,1598$, 1485, 1288, $1245 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.63$ (dd, $J=$ $7.6,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.46-7.39(\mathrm{~m}, 1 \mathrm{H}), 7.02-6.91(\mathrm{~m}, 2 \mathrm{H}), 5.15-5.07$ $(\mathrm{m}, 1 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 2.95(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.00(\mathrm{q}, J=7.2 \mathrm{~Hz}$, $2 \mathrm{H}), 1.73-1.64(\mathrm{~m}, 5 \mathrm{H}), 1.59(\mathrm{~s}, 3 \mathrm{H}), 1.43-1.33(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 203.1,158.2,133.0,131.3,130.0,128.8,124.4$, 120.5, 111.4, 55.4, 43.6, 29.6, 27.8, 25.6, 24.0, 17.6; HRMS (EI-TOF) Calcd for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{O}_{2}[\mathrm{M}]^{+}$: 246.1620, found 246.1618 .

1-(4-Ethylphenyl)-7-methyloct-6-en-1-one (1e). Prepared according to the general procedure B using 1-bromo-6-methyl-hept-5-ene ($2.1410 \mathrm{~g}, 11.2 \mathrm{mmol}$), Mg turnings ($0.5403 \mathrm{~g}, 22.5 \mathrm{mmol}$) 4ethylbenzaldehyde ($1.3446 \mathrm{~g}, 10.0 \mathrm{mmol}$), $\mathrm{Et}_{2} \mathrm{O}(40 \mathrm{~mL})$, PCC $(3.2691 \mathrm{~g}, 15.2 \mathrm{mmol})$ and $\mathrm{DCM}(60 \mathrm{~mL})$ as starting materials to afford $1 \mathbf{e}(2.0576 \mathrm{~g}, 8.4 \mathrm{mmol}, 84 \%$ yield) as a colorless oil. IR $\nu 3349$, 2966, 2931, 2860, 1683, 1608, $1454 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.88(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.27(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.15-5.08$ $(\mathrm{m}, 1 \mathrm{H}), 2.97-2.90(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.70(\mathrm{q}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.03$ $(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.78-1.69(\mathrm{~m}, 2 \mathrm{H}), 1.68(\mathrm{~s}, 3 \mathrm{H}), 1.60(\mathrm{~s}, 3 \mathrm{H})$, $1.46-1.37(\mathrm{~m}, 2 \mathrm{H}), 1.25(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 200.1,149.7,134.8,131.5,128.2,128.0,124.3,38.4,29.5$, 28.9, 27.8, 25.7, 24.1, 17.6, 15.2; HRMS (EI-TOF) Calcd for $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{O}$ $[\mathrm{M}]^{+}: 244.1827$, found 244.1824 .

1-(4-Fluorophenyl)-7-methyloct-6-en-1-one (1f). Prepared according to the general procedure B using 4-fluorobenzaldehyde (1.2469 g , 10.0 mmol), 1-bromo-6-methyl-hept-5-ene ($2.1410 \mathrm{~g}, 11.2 \mathrm{mmol}$), Mg turnings $(0.5403 \mathrm{~g}, 22.5 \mathrm{mmol}), \mathrm{Et}_{2} \mathrm{O}(40 \mathrm{~mL}), \mathrm{PCC}(3.2951 \mathrm{~g}, 15.3$ $\mathrm{mmol})$ and DCM $(60 \mathrm{~mL})$ as starting materials to afford $\mathbf{1 f}(1.5017 \mathrm{~g}$, $6.4 \mathrm{mmol}, 64 \%$ yield) as a colorless oil. IR $\nu 2929,2858,1686,1598$, $1506,1410,1231 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.00-7.90(\mathrm{~m}$, $2 \mathrm{H}), 7.11(\mathrm{t}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.11(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.92(\mathrm{t}, J=7.2$ $\mathrm{Hz}, 2 \mathrm{H}), 2.02(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.78-1.69(\mathrm{~m}, 2 \mathrm{H}), 1.68(\mathrm{~s}, 3 \mathrm{H})$, $1.60(\mathrm{~s}, 3 \mathrm{H}), 1.47-1.36(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $198.8,165.6(\mathrm{~d}, J=241.4 \mathrm{~Hz}), 133.5(\mathrm{~d}, J=2.9 \mathrm{~Hz}), 131.7,130.6(\mathrm{~d}, J$ $=36.0 \mathrm{~Hz}), 124.2,115.6(\mathrm{~d}, J=22.2 \mathrm{~Hz}), 38.4,29.5,27.8,25.7,24.0$, 17.7; ${ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-105.76$; HRMS (EI-TOF) Calcd for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{OF}[\mathrm{M}]^{+}$: 234.1420, found 234.1422.

1-(4-Bromophenyl)-7-methyloct-6-en-1-one (1g). Prepared according to the general procedure B using 4-bromobenzaldehyde $(1.8527 \mathrm{~g}, 10.0 \mathrm{mmol})$, 1-bromo-6-methyl-hept-5-ene ($2.1410 \mathrm{~g}, 11.2$ mmol), Mg turnings ($0.5403 \mathrm{~g}, 22.5 \mathrm{mmol}$), $\mathrm{Et}_{2} \mathrm{O}(40 \mathrm{~mL})$, PCC $(3.2579 \mathrm{~g}, 15.1 \mathrm{mmol})$ and $\mathrm{DCM}(60 \mathrm{~mL})$ as starting materials to afford $\mathbf{1 g}(2.3506 \mathrm{~g}, 8.0 \mathrm{mmol}, 80 \%$ yield $)$ as a white solid. $\mathrm{mp}=46-$ $48{ }^{\circ} \mathrm{C}$. IR ν 3028, 2961, 2929, 1649, 1463, $1255 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.79(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.56(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H})$, $5.09(\mathrm{t}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.89(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.00(\mathrm{q}, J=6.4 \mathrm{~Hz}$, $2 \mathrm{H}), 1.76-1.67(\mathrm{~m}, 2 \mathrm{H}), 1.66(\mathrm{~s}, 3 \mathrm{H}), 1.58(\mathrm{~s}, 3 \mathrm{H}), 1.45-1.34(\mathrm{~m}$, $2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 199.3, 135.7, 131.8, 131.7, 129.5, 127.9, 124.2, 38.4, 29.4, 27.7, 25.7, 23.9, 17.6; HRMS (EI-TOF) Calcd for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{OBr}[\mathrm{M}]^{+}$: 294.0619, found 294.0611.

1-(2,5-Dimethoxyphenyl)-7-methyloct-6-en-1-one (1h). Prepared according to the general procedure B using 2,5-dimethoxybenzaldehyde ($1.6689 \mathrm{~g}, 10.0 \mathrm{mmol}$), 1-bromo-6-methyl-hept-5-ene (2.1410 g , $11.2 \mathrm{mmol}), \mathrm{Mg}$ turnings $(0.5403 \mathrm{~g}, 22.5 \mathrm{mmol})$, PCC $(2.6770 \mathrm{~g}, 15.0$ $\mathrm{mmol}), \mathrm{Et}_{2} \mathrm{O}(40 \mathrm{~mL})$ and $\mathrm{DCM}(60 \mathrm{~mL})$ as starting materials to afford $1 \mathrm{~h}(2.0023 \mathrm{~g}, 7.2 \mathrm{mmol}, 72 \%$ yield) as a colorless oil. IR $\nu 2931$, $2856,1675,1495,1278,1222 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $7.21(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.01-6.97(\mathrm{~m}, 1 \mathrm{H}), 6.88(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H})$ $5.14-5.08(\mathrm{~m}, 1 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 2.96(\mathrm{t}, J=7.2 \mathrm{~Hz}$, $2 \mathrm{H}), 2.00(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.73-1.62(\mathrm{~m}, 5 \mathrm{H}), 1.59(\mathrm{~s}, 3 \mathrm{H}), 1.42-$ $1.33(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 202.7,153.4,152.8$, $131.4,128.9,124.5,119.4,113.9,113.1,56.0,55.8,43.6,29.6,27.9$,
25.7, 24.1, 17.6; HRMS (EI-TOF) Calcd for $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{O}_{3}[\mathrm{M}]^{+}$: 276.1725, found 276.1726.

7-Methyl-1-(naphthalen-2-yl)oct-6-en-1-one (1i). Prepared according to the general procedure A using 2 -naphthoyl chloride ($1.9197 \mathrm{~g}, 10.1 \mathrm{mmol}$), 1-bromo-6-methyl-hept-5-ene ($1.9197 \mathrm{~g}, 10.0$ $\mathrm{mmol}), \mathrm{Mg}$ turnings $(0.3841 \mathrm{~g}, 16.0 \mathrm{mmol}), \mathrm{CuI}(0.0963 \mathrm{~g}, 0.5 \mathrm{mmol})$ and THF (22 mL) as starting materials to afford $1 \mathrm{ii}(1.8444 \mathrm{~g}, 6.9$ mmol, 69% yield) as a colorless oil. IR $\nu 2925,2856,1682,1461 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.47(\mathrm{~s}, 1 \mathrm{H}), 8.04(\mathrm{dd}, J=8.4,1.6 \mathrm{~Hz}$, $1 \mathrm{H}), 7.97(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.91-7.85(\mathrm{~m}, 2 \mathrm{H}), 7.62-7.51(\mathrm{~m}$, $2 \mathrm{H}), 5.18-5.12(\mathrm{~m}, 1 \mathrm{H}), 3.13-3.06(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.06(\mathrm{q}, J=$ $7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.87-1.76(\mathrm{~m}, 2 \mathrm{H}), 1.70(\mathrm{~s}, 3 \mathrm{H}), 1.62(\mathrm{~s}, 3 \mathrm{H}), 1.53-1.42$ $(\mathrm{m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 200.4,135.5,134.4,132.5$, 131.6, 129.6, 129.5, 128.34, 128.27, 127.7, 126.7, 124.3, 123.9, 38.6, 29.6, 27.8, 25.7, 24.2, 17.7; HRMS (EI-TOF) Calcd for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{O}$ $[\mathrm{M}]^{+}: 266.1671$, found 266.1674.

Methyl 1H-indole-2-carboxylate. Prepared according to a previously reported literature method ${ }^{14}$ using $1 H$-indole-2-carboxylic acid $(8.06 \mathrm{~g}, 50.0 \mathrm{mmol})$ and $\mathrm{MeOH}(20 \mathrm{~mL})$ as starting materials to afford methyl 1 H -indole-2-carboxylate $(8.4800 \mathrm{~g}, 48.4 \mathrm{mmol}, 97 \%$ yield) as a white solid. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.07(\mathrm{br}, 1 \mathrm{H})$, $7.70(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{dd}, J=8.0,7.2$ $\mathrm{Hz}, 1 \mathrm{H}), 7.25-7.23(\mathrm{~m}, 1 \mathrm{H}), 7.17(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.96(\mathrm{~s}, 3 \mathrm{H})$.

Methyl 1-methyl-1H-indole-2-carboxylate. Prepared according to a previously reported literature method ${ }^{1}$ using methyl 1 H -indole-2carboxylate $(5.2658 \mathrm{~g}, 30 \mathrm{mmol}), \mathrm{CH}_{3} \mathrm{I}(2.2 \mathrm{~mL}, 36 \mathrm{mmol}), \mathrm{NaH}$ $(60 \%, 0.8651 \mathrm{~g}, 36 \mathrm{mmol})$ and THF $(60 \mathrm{~mL})$ as starting materials to afford the title compound ($3.7198 \mathrm{~g}, 19.7 \mathrm{mmol}, 65 \%$ yield) as a white solid. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.67(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.41-$ $7.32(\mathrm{~m}, 2 \mathrm{H}), 7.29(\mathrm{~s}, 1 \mathrm{H}), 7.18-7.11(\mathrm{~m}, 1 \mathrm{H}), 4.09(\mathrm{~s}, 3 \mathrm{H}), 3.92$ (s, $3 \mathrm{H})$.

1-Methyl-1H-indole-2-carboxylic acid. Prepared according to a previously reported literature method ${ }^{15}$ using methyl 1-methyl- 1 H -indole-2-carboxylate ($3.1408 \mathrm{~g}, 16.6 \mathrm{mmol}$) and $\mathrm{KOH}(12 \%, 150 \mathrm{~mL})$ as starting materials to afford the title compound $(2.8708 \mathrm{~g}, 16.4$ mmol, 99% yield) as a white solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $7.74-7.69(\mathrm{~m}, 1 \mathrm{H}), 7.48(\mathrm{~s}, 1 \mathrm{H}), 7.43-7.36(\mathrm{~m}, 2 \mathrm{H}), 7.17$ (ddd, $J=$ $8.0,6.0,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.11$ (s, 3H).

1-Methyl-1H-indole-2-carbonyl chloride. Prepared according to a general procedure using 1-methyl- 1 H -indole-2-carboxylic acid $(2.6312 \mathrm{~g}, 15.0 \mathrm{mmol})$ and thionyl chloride $(2.9 \mathrm{~mL})$ as starting materials refluxing in dichloromethane for 2 h . The solvent was removed under reduced pressure and dried in vacuo to afford the desired product. The crude product was used directly without further purification.

Methyl 5-methyl-1H-indole-2-carboxylate. Prepared according to a similar procedure for synthesis of methyl 1-methyl-1H-indole-2carboxylate using 5-methyl-1 H -indole-2-carboxylic acid $(1.9211 \mathrm{~g}, 11.0$ $\mathrm{mmol})$ and $\mathrm{MeOH}(18 \mathrm{~mL})$ as starting materials to afford the title compound ($1.6240 \mathrm{~g}, 8.6 \mathrm{mmol}, 78 \%$ yield) as a white solid. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.83(\mathrm{~s}, 1 \mathrm{H}), 7.47(\mathrm{~s}, 1 \mathrm{H}), 7.31(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $1 \mathrm{H}), 7.15(\mathrm{dd}, J=10.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.94(\mathrm{~s}, 3 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H})$.

Methyl-1,5-dimethyl-1H-indole-2-carboxylate. Prepared according to a similar procedure for synthesis of methyl 1-methyl-1H-indole-2-carboxylate using methyl 5 -methyl-1 H -indole-2-carboxylate $(1.5087 \mathrm{~g}, 8.0 \mathrm{mmol}), \mathrm{NaH}(0.2155 \mathrm{~g}, 10.5 \mathrm{mmol}), \mathrm{MeI}(0.74 \mathrm{~mL}, 9.6$ mmol) and THF (20 mL) as starting materials to afford the title compound ($1.0187 \mathrm{~g}, 5.0 \mathrm{mmol}, 63 \%$ yield) as a yellow solid. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.43(\mathrm{~s}, 1 \mathrm{H}), 7.26(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.21-$ 7.15 (m, 2H), $4.04(\mathrm{~s}, 3 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H})$.

1,5-Dimethyl-1H-indole-2-carboxylic acid. Prepared according to a similar procedure for synthesis of 1-methyl-1 H -indole-2-carboxylic acid using methyl-1,5-dimethyl-1 H -indole-2-carboxylate ($1.0176 \mathrm{~g}, 5.0$ mmol) and $\mathrm{KOH}(12 \%$ in water) as starting materials to afford the title compound ($0.8731 \mathrm{~g}, 4.6 \mathrm{mmol}, 92 \%$ yield) as a white solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.47(\mathrm{~s}, 1 \mathrm{H}), 7.37(\mathrm{~s}, 1 \mathrm{H}), 7.30(\mathrm{~d}, J=8.6$ $\mathrm{Hz}, 1 \mathrm{H}), 7.22(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.07(\mathrm{~s}, 3 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H})$.

1,5-Dimethyl-1H-indole-2-carbonyl chloride. Prepared according to the same procedure for synthesis of methyl- 1 H -indole-2carbonyl chloride.

7-Methyl-1-(1-methyl-1H-indol-2-yl)oct-6-en-1-one (1j). Prepared according to the general procedure A using 1 -methyl- 1 H -indole-2carbonyl chloride ${ }^{18}(1.9482 \mathrm{~g}, 10.0 \mathrm{mmol})$, 1-bromo-6-methyl-hept-5ene ($2.0797 \mathrm{~g}, 109 \mathrm{mmol}$), Mg turnings $(0.3613 \mathrm{~g}, 15.0 \mathrm{mmol}), \mathrm{CuI}$ ($0.1043 \mathrm{~g}, 0.55 \mathrm{mmol}$) and THF (22 mL) as starting materials to afford $1 \mathrm{j}(1.7365 \mathrm{~g}, 6.4 \mathrm{mmol}, 64 \%$ yield) as a colorless oil. IR $\nu 2928$, 2857, 1663, 1614, 1514, 1464, $1392 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.71(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.29(\mathrm{~s}$, $1 \mathrm{H}), 7.20-7.14(\mathrm{~m}, 1 \mathrm{H}), 5.16(\mathrm{t}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.08(\mathrm{~s}, 3 \mathrm{H}), 3.01-$ $2.93(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.07(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.84-1.75(\mathrm{~m}, 2 \mathrm{H})$, $1.72(\mathrm{~s}, 3 \mathrm{H}), 1.64(\mathrm{~s}, 3 \mathrm{H}), 1.51-1.42(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 194.5,139.9,134.8,131.5,125.71,125.65,124.3,122.7$, 120.6, 111.0, 110.2, 39.8, 32.1, 29.5, 27.8, 25.7, 24.8, 17.6; HRMS (EITOF) Calcd for $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{NO}[\mathrm{M}]^{+}: 269.1780$, found 269.1775 .

1-(1,5-Dimethyl-1H-indol-2-yl)-7-dimethyloct-6-en-1-one (1k). Prepared according to the general procedure A using 1,5-dimethyl$1 H$-indole-2-carbonyl chloride $(0.9800 \mathrm{~g}, 4.7 \mathrm{mmol})$, 1-bromo-6-methyl-hept-5-ene ($0.6734 \mathrm{~g}, 3.5 \mathrm{mmol}$), CuI ($0.0362 \mathrm{~g}, 0.19 \mathrm{mmol}$), Mg turnings $(0.1434 \mathrm{~g}, 6.0 \mathrm{mmol})$ and THF (20 mL) as starting materials to afford $\mathbf{1 k}(0.4753 \mathrm{~g}, 1.2 \mathrm{mmol}, 35 \%$ yield) as a colorless oil. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.43(\mathrm{~s}, 1 \mathrm{H}), 7.24(\mathrm{~d}, J=1.6 \mathrm{~Hz}$, $1 \mathrm{H}), 7.19(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.17(\mathrm{~s}, 1 \mathrm{H}), 5.11(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H})$, $4.03(\mathrm{~s}, 3 \mathrm{H}), 2.95-2.89(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}), 2.02(\mathrm{q}, J=$ $7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.79-1.69(\mathrm{~m}, 2 \mathrm{H}), 1.67(\mathrm{~s}, 3 \mathrm{H}), 1.59(\mathrm{~s}, 3 \mathrm{H}), 1.47-1.35$ $(\mathrm{m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 194.7,138.6,134.9,131.6$, $129.9,127.8,126.0,124.3,122.0,110.6,110.0,39.9,32.2,29.6,27.8$, 25.7, 25.0, 21.3, 17.7; IR ν 2923, 2856, 1660, 1523, 1459, 1177, 732 cm^{-1}; HRMS (EI-TOF) Calcd for $\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{NO}[\mathrm{M}]^{+}$: 283.1936, found 283.1935.

Diethyl 2-(3-methylbut-2-en-1-yl)malonate. Prepared according to a previously reported procedure ${ }^{17}$ using 1-bromo-3-methylbut-2-ene ($3.6339 \mathrm{~g}, 22 \mathrm{mmol}$), diethyl malonate ($5.5368 \mathrm{~g}, 20 \mathrm{mmol}$), $\mathrm{K}_{2} \mathrm{CO}_{3}(5.5368 \mathrm{~g}, 40 \mathrm{mmol})$ and acetons $(50 \mathrm{~mL})$ as atarting materials. The mixture was refluxed overnight. Then $\mathrm{K}_{2} \mathrm{CO}_{3}$ was filtered and the solvent was removed. The residue was purified by flash column chromatography ($\mathrm{PE} / \mathrm{EtOAc}, 30: 1$) to give the title compound as a colorless oil ($3.9206 \mathrm{~g}, 17.2 \mathrm{mmol}, 86$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.11-5.02(\mathrm{~m}, 1 \mathrm{H}), 4.18(\mathrm{q}, J=7.2 \mathrm{~Hz}$, $4 \mathrm{H}), 3.32(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.58(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.68(\mathrm{~s}, 3 \mathrm{H})$, $1.63(\mathrm{~s}, 3 \mathrm{H}), 1.25(\mathrm{t}, J=7.1 \mathrm{~Hz}, 6 \mathrm{H})$.

Diethyl 2-(3-Methylbut-2-en-1-yl)-2-(3-oxo-3-phenylpropyl)malonate (11). Prepared according to a similar procedure. ${ }^{18}$ To a suspension of $\mathrm{NaH}(0.2400 \mathrm{~g}, 6.0 \mathrm{mmol})$ in THF/DMF $(1: 1,6 \mathrm{~mL})$ was added diethyl 2-(3-methylbut-2-en-1-yl)malonate ($1.1506 \mathrm{~g}, 5.04$ mmol) dropwise at $0^{\circ} \mathrm{C}$ under N_{2} atmosphere and stirred for another 10 min . Then the reaction mixture was warmed to room temperature and stirred for 1 h . Then 3-chloropropiophenone ($1.0211 \mathrm{~g}, 6 \mathrm{mmol}$) and $\mathrm{NaI}(0.0750 \mathrm{~g}, 0.5 \mathrm{mmol})$ was added and the mixture was refluxed at $80^{\circ} \mathrm{C}$ for 18 h . The resulting suspension was diluted with ether, and quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$. The organic layer was washed with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$. The aqueous was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic layers were dried over MgSO_{4}, filtered, concentrated and purified by flash column chromatography on silica gel (PE/EtOAc 30:1) to afford the title compound ($1.0989 \mathrm{~g}, 3.0$ $\mathrm{mmol}, 61 \%$ yield) as a colorless oil. IR $\nu 2978,2926,1730,1688,1449$, $1182 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.93(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H})$, $7.54(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.00(\mathrm{t}, J=7.2 \mathrm{~Hz}$, $1 \mathrm{H}), 4.17(\mathrm{q}, J=7.2 \mathrm{~Hz}, 4 \mathrm{H}), 3.01-2.94(\mathrm{~m}, 2 \mathrm{H}), 2.66(\mathrm{~d}, J=7.2 \mathrm{~Hz}$, $2 \mathrm{H}), 2.32-2.26(\mathrm{~m}, 2 \mathrm{H}), 1.68(\mathrm{~s}, 3 \mathrm{H}), 1.62(\mathrm{~s}, 3 \mathrm{H}), 1.22(\mathrm{t}, J=6.8$ $\mathrm{Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 199.0, 171.3, 136.7, 135.6, 133.0, 128.5, 128.0, 117.6, 61.2, 57.0, 33.8, 32.2, 27.1, 25.9, 17.9, 14.0; HRMS (EI-TOF) Calcd for $\mathrm{C}_{21} \mathrm{H}_{28} \mathrm{O}_{5}[\mathrm{M}]^{+}: 360.1937$, found 360.1938.

3,7-Dimethyl-1-phenyloct-6-en-1-one (1m). Prepared according to the general procedure B using phenylmagnesium bromide (1 M in THF, 20 mL), 2,6-dimethyl-5-heptena ($2.7 \mathrm{~mL}, 15.0 \mathrm{mmol}$), PCC $(6.8200 \mathrm{~g}, 31.6 \mathrm{mmol})$ and $\mathrm{DCM}(80 \mathrm{~mL})$ as starting materials to afford $1 \mathrm{~m}(1.9110 \mathrm{~g}, 8.3 \mathrm{mmol}, 55 \%$ yield) as a colorless oil. IR ν 3060, 2962, 2854, 1729, 1686, $1450 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.94(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.55(\mathrm{dd}, J=7.2,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.45$
$(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.14-5.06(\mathrm{~m}, 1 \mathrm{H}), 2.96(\mathrm{dd}, J=15.6,5.2 \mathrm{~Hz}$, $1 \mathrm{H}), 2.74(\mathrm{dd}, J=15.6,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.25-2.14(\mathrm{~m}, 1 \mathrm{H}), 2.11-1.91$ $(\mathrm{m}, 2 \mathrm{H}), 1.68(\mathrm{~s}, 3 \mathrm{H}), 1.61(\mathrm{~s}, 3 \mathrm{H}), 1.45-1.40(\mathrm{~m}, 1 \mathrm{H}), 1.35-1.23$ $(\mathrm{m}, 1 \mathrm{H}), 0.97(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 200.4, 137.4, 132.8, 131.5, 128.5, 128.1, 124.4, 45.9, 37.2, 29.5, 25.7, 25.5, 19.9, 17.6; HRMS (EI-TOF) Calcd for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{O}[\mathrm{M}]^{+}: 230.1671$, found 230.1675 .

6-Bromohexanal. ${ }^{19}$ Prepared according to a general procedure using 6-bromohexan-1-ol ($4.8732 \mathrm{~g}, 26.9 \mathrm{mmol}$), PCC (12.5900 g , $58.4 \mathrm{mmol})$ and DCM $(160 \mathrm{~mL})$ as starting materials. The mixture was stirred for 24 h at room temperature. $\mathrm{Et}_{2} \mathrm{O}$ was added and the mixture was filtered through a pad of silica gel. The residue was concentrated and distilled in vacuo (with oil pump) to afford the title compound ($2.7416 \mathrm{~g}, 15.3 \mathrm{mmol}, 57 \%$ yield) as a colorless oil. ${ }^{1} \mathrm{H}$ NMR ($\left.400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.80-9.74(\mathrm{~m}, 1 \mathrm{H}), 3.42(\mathrm{t}, J=6.8 \mathrm{~Hz}$, $2 \mathrm{H}), 2.47(\mathrm{td}, J=7.2,1.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.95-1.83(\mathrm{~m}, 2 \mathrm{H}), 1.73-1.60(\mathrm{~m}$, $2 \mathrm{H}), 1.54-1.43(\mathrm{~m}, 2 \mathrm{H})$.

1-Bromo-7-methyloct-6-ene. ${ }^{20}$ Prepared by a procedure smiliar to 1-bromo-6-methyl-hept-5-ene using 6-bromohexanal (2.7400 g , 15.3 mmol), isopropyl triphenyl phosphonium bromide $(9.1200 \mathrm{~g}$, $23.7 \mathrm{mmol})$ and THF $(100 \mathrm{~mL})$ as atarting materials to afford the title compound $(2.0646 \mathrm{~g}, 10.1 \mathrm{mmol}, 66 \%$ yield $)$ as a colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.14-5.06(\mathrm{~m}, 1 \mathrm{H}), 3.40(\mathrm{t}, J=7.2 \mathrm{~Hz}$, $2 \mathrm{H}), 1.98(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.91-1.82(\mathrm{~m}, 2 \mathrm{H}), 1.69(\mathrm{~s}, 3 \mathrm{H}), 1.60$ $(\mathrm{s}, 3 \mathrm{H}), 1.49-1.30(\mathrm{~m}, 4 \mathrm{H})$.

8-Methyl-1-phenylnon-7-en-1-one (1n). Prepared according to the general procedure A using benzoyl chloride ($1.3970 \mathrm{~g}, 10.0 \mathrm{mmol}$), 1-bromo-7-methyl-hept-5-ene ($2.0640 \mathrm{~g}, 10.0 \mathrm{mmol}$), Mg turnings $(0.3710 \mathrm{~g}, 15.5 \mathrm{mmol}), \mathrm{CuI}(0.0957 \mathrm{~g}, 0.5 \mathrm{mmol})$ and THF $(40 \mathrm{~mL})$ as starting materials to afford $\mathbf{l n}(1.7469 \mathrm{~g}, 7.6 \mathrm{mmol}, 76 \%$ yield) as a colorless oil. IR ν 2926, 2855, 1686, 1449, $1222 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.96(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.55(\mathrm{dd}, J=7.6,7.2 \mathrm{~Hz}$, $1 \mathrm{H}), 7.45(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.17-5.07(\mathrm{~m}, 1 \mathrm{H}), 2.96(\mathrm{t}, J=7.6 \mathrm{~Hz}$, $2 \mathrm{H}), 2.05-1.91(\mathrm{~m}, 2 \mathrm{H}), 1.79-1.70(\mathrm{~m}, 2 \mathrm{H}), 1.68(\mathrm{~s}, 3 \mathrm{H}), 1.59(\mathrm{~s}$, $3 \mathrm{H}), 1.42-1.34(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 200.4$, 137.0, 132.8, 131.3, 128.5, 128.0, 124.6, 38.5, 29.7, 29.0, 27.8, 25.7, 24.3, 17.6; HRMS (EI-TOF) Calcd for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{O}[\mathrm{M}]^{+}$: 230.1671, found 230.1671 .

4-Bromobutanal. ${ }^{21}$ Prepared by a procedure smiliar to synthesis of 5-bromopentanal using tetrahydrofuran ($8.1 \mathrm{~mL}, 100 \mathrm{mmol}$), BBr_{3} ($3.6 \mathrm{~mL}, 37.0 \mathrm{mmol}$), PCC ($23.7400 \mathrm{~g}, 110.1 \mathrm{mmol}$) and DCM (135 mL) as starting materials to afford the title compound $(7.6563 \mathrm{~g}, 51 \%$ yield, purity 68\%) as a colorless oil. The ${ }^{1} \mathrm{H}$ NMR is in accordance to the literature. ${ }^{13}$

6-Bromo-2-methylhex-2-ene. Prepared by a procedure smiliar to synthesis of 1-bromo-6-methyl-hept-5-ene using 4-bromobutanal ($7.6560 \mathrm{~g}, 50.7 \mathrm{mmol}$), isopropyl triphenyl phosphonium bromide $(28.9500 \mathrm{~g}, 75.1 \mathrm{mmol})$, n-BuLi $(2.4 \mathrm{M}$ in hexane, $27.5 \mathrm{~mL}, 66.0$ $\mathrm{mmol})$ and THF $(250 \mathrm{~mL})$ as starting materials to afford the title compound ($2.2179 \mathrm{~g}, 12.5 \mathrm{mmol}, 25 \%$ yield) as a colorless oil. ${ }^{1} \mathrm{H}$ NMR ($\left.400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.10-5.03(\mathrm{~m}, 1 \mathrm{H}), 3.40(\mathrm{t}, J=6.8 \mathrm{~Hz}$, $2 \mathrm{H}), 2.13(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.93-1.84(\mathrm{~m}, 2 \mathrm{H}), 1.69(\mathrm{~s}, 3 \mathrm{H}), 1.63$ ($\mathrm{s}, 3 \mathrm{H}$).

6-Methyl-1-phenylhept-5-en-1-one (10). Prepared according to the general procedure A using benzoyl chloride $(1.4 \mathrm{~mL}, 12.0 \mathrm{mmol})$, 1-bromo5-methyl-hept-5-ene ($2.0895 \mathrm{~g}, 11.8 \mathrm{mmol}$), Mg turnings ($0.4893 \mathrm{~g}, 20.0 \mathrm{mmol}$), CuI ($0.1169 \mathrm{~g}, 0.6 \mathrm{mmol}$) and THF (50 mL) as starting materials to afford $10(1.2412 \mathrm{~g}, 6.1 \mathrm{mmol}, 52 \%$ yield) as a colorless oil. IR ν 2926, 2856, 1687, $1450 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.95(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.58-7.52(\mathrm{~m}, 1 \mathrm{H}), 7.49-7.43(\mathrm{~m}$, $2 \mathrm{H}), 5.17-5.10(\mathrm{~m}, 1 \mathrm{H}), 2.99-2.93(\mathrm{~m}, 2 \mathrm{H}), 2.08(\mathrm{q}, J=7.6 \mathrm{~Hz}$, $2 \mathrm{H}), 1.84-1.74(\mathrm{~m}, 2 \mathrm{H}), 1.69(\mathrm{~s}, 3 \mathrm{H}), 1.60(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 200.6,137.1,132.8,132.5,128.5,128.0,123.8,37.9$, 27.5, 25.7, 24.5, 17.7; HRMS (EI-TOF) Calcd for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}[\mathrm{M}]^{+}$: 202.1358, found 202.1355.
(Z/E)-1-Phenylnon-6-en-1-one (1p). ${ }^{13}$ Prepared according to the general procedure A using benzoyl chloride ($1.4244 \mathrm{~g}, 10.1 \mathrm{mmol}$), 1-bromo5-methyl-hex-4-ene (Z / E mixture) $(1.9603 \mathrm{~g}, 10.2 \mathrm{mmol}), \mathrm{Mg}$ turnings ($0.3703 \mathrm{~g}, 15.4 \mathrm{mmol}), \mathrm{CuI}(0.1055 \mathrm{~g}, 0.5 \mathrm{mmol})$ and THF $(35 \mathrm{~mL})$ as starting materials to afford $\mathbf{1 p}(1.5983 \mathrm{~g}, 7.4 \mathrm{mmol}, 74 \%$
yield) as a colorless oil. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.96(\mathrm{~d}, J=7.2$ $\mathrm{Hz}, 2 \mathrm{H}), 7.55(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{dd}, J=7.2,7.2 \mathrm{~Hz}, 2 \mathrm{H}), 5.51-$ $5.26(\mathrm{~m}, 2 \mathrm{H}), 2.97(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.14-1.97(\mathrm{~m}, 4 \mathrm{H}), 1.81-1.70$ $(\mathrm{m}, 2 \mathrm{H}), 1.50-1.40(\mathrm{~m}, 2 \mathrm{H}), 0.96(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H})$. Anal. Calcd $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}$ for C, 83.28; H, 9.32. Found C, 82.84; H, 9.01.

General Procedure C for Synthesis of Silyl Enol Ethers. To a 50 mL flame-dried Schlenk flask cooled under N_{2}, LDA (2 M in THF) and THF (3 mL) was added. The Schlenk was placed at $-78^{\circ} \mathrm{C}$ and 1 (5 mmol , in 6 mL THF) was added dropwise via syringe. The mixture was stirred for another 30 min at $-78^{\circ} \mathrm{C}$, and then TBDMSOTf (7.5 $\mathrm{mmol}, 1.5$ equiv) was added via syringe and stirred for 30 min at -78 ${ }^{\circ} \mathrm{C}$ and stirred overnight at $0^{\circ} \mathrm{C}$. The reaction mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}$, quenched with saturated aqueous NaHCO_{3} and separated. The aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 20 \mathrm{~mL})$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated and purified by flash column chromatography on silica gel to afford the silyl enol ethers.
(Z)-tert-Butyldimethyl((7-methyl-1-phenylocta-1,6-dien-1-yl)oxy)silane (2a). Prepared according the general procedure C employing la ($0.7775 \mathrm{~g}, 3.6 \mathrm{mmol}$), LDA (2 M in THF, 2.4 mL , $4.7 \mathrm{mmol})$, TBDMSOTf ($1.26 \mathrm{~mL}, 5.4 \mathrm{mmol}$) and THF (6 mL) as starting materials to afford 2a ($0.9745 \mathrm{~g}, 2.9 \mathrm{mmol}, 82 \%$ yield) as a colorless oil. IR ν 3031, 2957, 2929, 1649, 1447, $1283 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.42(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.30-7.19(\mathrm{~m}, 3 \mathrm{H})$, $5.14(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.10(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.23-2.15(\mathrm{~m}, 2 \mathrm{H})$, $2.08-1.98(\mathrm{~m}, 2 \mathrm{H}), 1.69(\mathrm{~s}, 3 \mathrm{H}), 1.61(\mathrm{~s}, 3 \mathrm{H}), 1.50-1.39(\mathrm{~m}, 2 \mathrm{H})$, 0.98 (s, 9H), $-0.06(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 149.3$, 139.9, 131.5, 127.9, 127.3, 125.9, 124.6, 111.9, 29.9, 27.9, 25.9, 25.8, 25.7, 18.3, 17.7, -4.1; HRMS (EI-TOF) Calcd for $\mathrm{C}_{21} \mathrm{H}_{34} \mathrm{OSi}$ $[\mathrm{M}]^{+}: 330.2379$, found 330.2382 .
(Z)-tert-Butyl((1-(4-methoxyphenyl)-7-methylocta-1,6-dien-1-yl)oxy)dimethylsilane (2b). Prepared according to the general procedure C employing $\mathbf{1 b}(0.9722 \mathrm{~g}, 3.95 \mathrm{mmol})$, LDA (2 M in THF, 2.4 mL), TBDMSOTf ($1.3 \mathrm{~mL}, 5.5 \mathrm{mmol}$) as starting materials to afford $\mathbf{2 b}$ ($1.0615 \mathrm{~g}, 2.9 \mathrm{mmol}, 75 \%$ yield) as a colorless oil. IR $\nu 2930,2857$, 1650, 1609, 1510, $1248 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.36$ (d, $J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.82(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.16(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.00$ $(\mathrm{t}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 2.21-2.16(\mathrm{~m}, 2 \mathrm{H}), 2.07-2.01(\mathrm{~m}$, $2 \mathrm{H}), 1.71(\mathrm{~s}, 3 \mathrm{H}), 1.62(\mathrm{~s}, 3 \mathrm{H}), 1.49-1.41(\mathrm{~m}, 2 \mathrm{H}), 0.99(\mathrm{~s}, 9 \mathrm{H})$, $-0.04(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.0,148.9,132.6$, 131.4, 127.1, 124.7, 113.2, 110.4, 55.2, 30.0, 27.9, 25.9, 25.8, 25.7, 18.3, 17.6, -4.1; HRMS (EI-TOF) Calcd for $\mathrm{C}_{22} \mathrm{H}_{36} \mathrm{O}_{2} \mathrm{Si}[\mathrm{M}]^{+}: 360.2485$, found 360.2484 .
(Z)-tert-Butyl((1-(3-methoxyphenyl)-7-methylocta-1,6-dien-1-yl)oxy)dimethylsilane (2c). Prepared according to the general procedure C employing 1c $(0.7427 \mathrm{~g}, 3.0 \mathrm{mmol})$, LDA (2 M in THF, $2 \mathrm{~mL}, 4.0$ $\mathrm{mmol})$, TBDMSOTf $(1.1 \mathrm{~mL}, 4.5 \mathrm{mmol})$ and THF (7 mL) as starting materials to afford $2 \mathrm{c}(0.7827 \mathrm{~g}, 2.2 \mathrm{mmol}, 72 \%$ yield) as a colorless oil.IR ν 2930, 2857, 1649, 1600, $1256 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.23-7.16(\mathrm{~m}, 1 \mathrm{H}), 7.04(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{~s}, 1 \mathrm{H})$, $6.79(\mathrm{dd}, J=8.0,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.20-5.10(\mathrm{~m}, 2 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 2.23-$ $2.18(\mathrm{~m}, 2 \mathrm{H}), 2.08-2.02(\mathrm{~m}, 2 \mathrm{H}), 1.71(\mathrm{~s}, 3 \mathrm{H}), 1.63(\mathrm{~s}, 3 \mathrm{H}), 1.50-$ $1.43(\mathrm{~m}, 2 \mathrm{H}), 1.00(\mathrm{~s}, 9 \mathrm{H}),-0.01(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 159.2,149.0,141.4,131.5,128.9,124.6,118.4,113.1,112.1$, 111.1, 55.1, 29.8, 27.9, 25.9, 25.80, 25.76, 18.3, 17.7, -4.1; HRMS (EITOF) Calcd for $\mathrm{C}_{22} \mathrm{H}_{36} \mathrm{O}_{2} \mathrm{Si}[\mathrm{M}]^{+}: 360.2485$, found 360.2487 .
(Z)-tert-Butyl((1-(2-methoxyphenyl)-7-methylocta-1,6-dien-1-yl)oxy)dimethylsilane (2d). Prepared according to the general procedure C employing $\mathbf{1 d}(0.4611 \mathrm{~g}, 1.82 \mathrm{mmol})$, LDA (2 M in THF, 1.2 mL , $2.4 \mathrm{mmol})$, TBDMSOTf $(0.66 \mathrm{~mL}, 2.8 \mathrm{mmol})$ and THF $(5 \mathrm{~mL})$ as starting materials to afford $2 \mathrm{~d}(0.5292 \mathrm{~g}, 1.47 \mathrm{mmol}, 78 \%$ yield, 86% purity) as a colorless oil. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.21-7.10$ $(\mathrm{m}, 2 \mathrm{H}), 6.85-6.77(\mathrm{~m}, 1 \mathrm{H}), 6.75(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.08(\mathrm{t}, J=7.2$ $\mathrm{Hz}, 1 \mathrm{H}), 4.83(\mathrm{t}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 2.18-2.12(\mathrm{~m}, 2 \mathrm{H})$, $1.99-1.94(\mathrm{~m}, 2 \mathrm{H}), 1.62(\mathrm{~s}, 3 \mathrm{H}), 1.54(\mathrm{~s}, 3 \mathrm{H}), 1.42-1.31(\mathrm{~m}, 2 \mathrm{H})$, $0.83(\mathrm{~s}, 9 \mathrm{H}),-0.21(\mathrm{~s}, 6 \mathrm{H})$. Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{36} \mathrm{O}_{2} \mathrm{Si}: \mathrm{C}, 73.28$; H , 10.06. Found C, 72.89; H, 9.81.
(Z)-tert-Butyl((1-(4-ethylphenyl)-7-methylocta-1,6-dien-1-yl)oxy)dimethylsilane (2e). Prepared according to the general procedure C employing 1e ($0.7609 \mathrm{~g}, 3.1 \mathrm{mmol}$), LDA (2 M in THF, $1.9 \mathrm{~mL}, 3.7$
mmol), TBDMSOTf ($1.1 \mathrm{~mL}, 4.6 \mathrm{mmol}$) as starting materials to afford $2 \mathbf{e}(0.6498 \mathrm{~g}, 2.7 \mathrm{mmol}, 86 \%$ yield) as a colorless oil. IR $\nu 2931$, 2858, 1603, $1283 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.34(\mathrm{~d}, J=$ $8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.11(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.17-5.12(\mathrm{~m}, 1 \mathrm{H}), 5.06(\mathrm{t}, J=$ $7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.63(\mathrm{q}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.2-2.16(\mathrm{~m}, 2 \mathrm{H}), 2.06-2.01$ $(\mathrm{m}, 2 \mathrm{H}), 1.70(\mathrm{~s}, 3 \mathrm{H}), 1.61(\mathrm{~s}, 3 \mathrm{H}), 1.48-1.40(\mathrm{~m}, 2 \mathrm{H}), 1.23(\mathrm{t}, J=$ $7.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.98(\mathrm{~s}, 9 \mathrm{H}),-0.05(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 149.3,143.3,137.3,131.4,127.3,125.8,124.7,111.2,29.9$, 28.5, 27.9, 25.9, 25.8, 25.7, 18.3, 17.7, 15.5, -4.0; HRMS (EI-TOF) Calcd for $\mathrm{C}_{23} \mathrm{H}_{38} \mathrm{OSi}[\mathrm{M}]^{+}$: 358.2692 , found 358.2690 .
(Z)-Triethyl((1-(4-ethylphenyl)-7-methylocta-1,6-dien-1-yl)oxy)silane (2ea). Prepared according to the general procedure C employing 1e $(0.5732 \mathrm{~g}, 2.3 \mathrm{mmol})$, LDA (2 M in THF, 2.0 $\mathrm{mmol})$, chlorotriethylsilane $(0.67 \mathrm{~mL}, 4.0 \mathrm{mmol})$ as starting materials to afford 2ea $(0.4440 \mathrm{~g}, 1.2 \mathrm{mmol}, 41 \%$ yield) as a colorless oil. IR ν 3028, 2960, 2878, 1686, 1649, $1458 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.37(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.12(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.16(\mathrm{t}, J$ $=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.10(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.64(\mathrm{q}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H})$, 2.24-2.18 (m, 2H), 2.08-2.02 (m, 2H), $1.71(\mathrm{~s}, 3 \mathrm{H}), 1.63(\mathrm{~s}, 3 \mathrm{H})$, $1.48-1.42(\mathrm{~m}, 2 \mathrm{H}), 1.24(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.94(\mathrm{t}, J=7.9 \mathrm{~Hz}, 9 \mathrm{H})$, $0.62(\mathrm{q}, J=8.0 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 149.4,143.4$, 137.1, 131.5, 127.4, 125.5, 124.6, 110.6, 30.0, 28.5, 27.9, 25.8, 25.7, 17.7, 15.4, 6.7, 5.4; HRMS (EI-TOF) Calcd for $\mathrm{C}_{23} \mathrm{H}_{38} \mathrm{OSi}[\mathrm{M}]^{+}$: 358.2692, found 358.2690.
(Z)-((1-(4-Ethylphenyl)-7-methylocta-1,6-dien-1-yl)oxy)triisopropylsilane (2eb). Prepared according to the general procedure C employing le ($0.7360 \mathrm{~g}, 3.0 \mathrm{mmol}$), HMDS (2 M in THF, 2.0 mL , 4.0 mmol) instead of LDA, triisopropylsilyl chloride $(0.85 \mathrm{~mL}, 4.0$ $\mathrm{mmol})$ and THF $(8 \mathrm{~mL})$ as starting materials to afford $2 \mathbf{e b}(0.8925 \mathrm{~g}$, $2.2 \mathrm{mmol}, 74 \%$ yield) as a colorless oil. IR $\nu 2926,1648,1462,1329$ $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.36(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.11$ $(\mathrm{d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.15(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.94(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H})$, $2.64(\mathrm{q}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.25-2.20(\mathrm{~m}, 2 \mathrm{H}), 2.07-2.02(\mathrm{~m}, 2 \mathrm{H}), 1.70$ $(\mathrm{s}, 3 \mathrm{H}), 1.62(\mathrm{~s}, 3 \mathrm{H}), 1.49-1.42(\mathrm{~m}, 2 \mathrm{H}), 1.24(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H})$, $1.11-1.02(\mathrm{~m}, 21 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 150.2,143.4$, 137.8, 131.4, 127.3, 126.0, 124.7, 110.6, 29.9, 28.5, 27.9, 25.9, 25.8, 17.9, 17.6, 15.5, 13.5; HRMS (EI-TOF) Calcd for $\mathrm{C}_{26} \mathrm{H}_{44} \mathrm{OSi}[\mathrm{M}]^{+}$: 400.3161, found 400.3163.
(Z)-tert-Butyl((1-(4-fluorophenyl)-7-methylocta-1,6-dien-1-yl)oxy)dimethylsilane (2f). Prepared according to the general procedure C employing lf ($1.1885 \mathrm{~g}, 5.0 \mathrm{mmol}$), LDA (2 M in THF, $3 \mathrm{~mL}, 6.0$ mmol), TBDMSOTf ($1.73 \mathrm{~mL}, 7.5 \mathrm{mmol}$) and THF (8 mL) as starting materials to afford $2 \mathrm{f}(1.6154 \mathrm{~g}, 4.6 \mathrm{mmol}, 91 \%$ yield) as a colorless oil. IR ν 2930, 2857, 1651, 1507, $1228 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.43-7.36(\mathrm{~m}, 2 \mathrm{H}), 7.01-6.93(\mathrm{~m}, 2 \mathrm{H}), 5.14(\mathrm{t}, J=$ $7.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.04(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.21-2.16(\mathrm{~m}, 2 \mathrm{H}), 2.07-2.01$ $(\mathrm{m}, 2 \mathrm{H}), 1.70(\mathrm{~s}, 3 \mathrm{H}), 1.62(\mathrm{~s}, 3 \mathrm{H}), 1.49-1.41(\mathrm{~m}, 2 \mathrm{H}), 0.98(\mathrm{~s}, 9 \mathrm{H})$, $-0.05(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 162.2(\mathrm{~d}, J=247.5$ $\mathrm{Hz}), 148.4,136.1(\mathrm{~d}, J=3.0 \mathrm{~Hz}), 131.6,127.5(\mathrm{~d}, J=7.1 \mathrm{~Hz}), 124.5$, 114.7 (d, $J=21.2 \mathrm{~Hz}$), 111.8, 29.8, 27.9, 25.83, 25.80, 25.75, 18.3, 17.7, -4.1 ; ${ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-115.2$; HRMS (EI-TOF) Calcd for $\mathrm{C}_{21} \mathrm{H}_{33} \mathrm{OSiF}[\mathrm{M}]^{+}: 348.2285$, found 348.2289.
(Z)-tert-Butyl((1-(4-bromophenyl)-7-methylocta-1,6-dien-1-yl)oxy)dimethylsilane (2g). Prepared according to the general procedure C employing $\mathbf{1 g}(0.8827 \mathrm{~g}, 3.0 \mathrm{mmol})$, LDA (2 M in THF, $1.6 \mathrm{~mL}, 3.3$ $\mathrm{mmol})$, TBDMSOTf ($1.0 \mathrm{mml}, 4.5 \mathrm{mmol}$) and THF (6 mL) as starting materials to afford $2 \mathrm{~g}(0.5298 \mathrm{~g}, 1.3 \mathrm{mmol}, 43 \%$ yield) as a colorless oil. IR ν 2956, 2857, 1647, 1483, $1256 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.37(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.27(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H})$, $5.13-5.06(\mathrm{~m}, 2 \mathrm{H}), 2.18-2.12(\mathrm{~m}, 2 \mathrm{H}), 2.03-1.98(\mathrm{~m}, 2 \mathrm{H}), 1.67(\mathrm{~s}$, $3 \mathrm{H}), 1.58(\mathrm{~s}, 3 \mathrm{H}), 1.49-1.38(\mathrm{~m}, 2 \mathrm{H}), 0.96(\mathrm{~s}, 9 \mathrm{H}),-0.07(\mathrm{~s}, 6 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 148.3,138.8,131.5,131.0,127.4$, 124.5, 121.1, 112.6, 29.7, 27.9, 25.8, 25.7, 18.3, 17.7, -4.0; HRMS (EITOF) Calcd for $\mathrm{C}_{21} \mathrm{H}_{33} \mathrm{OSiBr}\left[\mathrm{M}^{+}\right.$: 408.1484, found 408.1486 .
(Z)-tert-Butyl((1-(2,5-dimethoxyphenyl)-7-methylocta-1,6-dien-1yl)oxy)dimethylsilane (2h). Prepared according to the general procedure C employing $\mathbf{1 h}(1.1886 \mathrm{~g}, 4.3 \mathrm{mmol})$, LDA (2 M in THF, $4.0 \mathrm{~mL}, 8 \mathrm{mmol}$), TBDMSOTf ($1.6 \mathrm{~mL}, 7.0 \mathrm{mmol}$) and THF (6 $\mathrm{mL})$ as starting materials to afford $2 \mathrm{~h}(1.4530 \mathrm{~g}, 3.7 \mathrm{mmol}, 74 \%$ yield) as a colorless oil. IR ν 2932, 2856, 1658, 1496, 1216, $1053 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$

NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.88(\mathrm{dd}, J=2.0,1.6 \mathrm{~Hz} \mathrm{1H}), 6.76(\mathrm{~d}, J=$ $2.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.18-5.17(\mathrm{~m}, 1 \mathrm{H}), 4.98(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{~s}$, $3 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 2.22-2.19(\mathrm{~m}, 2 \mathrm{H}), 2.07-2.01(\mathrm{~m}, 2 \mathrm{H}), 1.70(\mathrm{~s}$, $3 \mathrm{H}), 1.62(\mathrm{~s}, 3 \mathrm{H}), 1.4-1.10(\mathrm{~m}, 2 \mathrm{H}), 0.93(\mathrm{~s}, 9 \mathrm{H}),-0.10(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 153.0,151.2,146.2,131.3,130.0,124.8$, 115.9, 114.2, 113.4, 112.1, 55.9, 55.7, 29.9, 27.9, 25.7, 25.9, 25.5, 18.3, 17.6, -4.5; HRMS (EI-TOF) Calcd for $\mathrm{C}_{23} \mathrm{H}_{38} \mathrm{O}_{3} \mathrm{Si}[\mathrm{M}]^{+}$: 390.2590, found 390.2592 .
(Z)-tert-Butyldimethyl((7-methyl-1-(naphthalen-2-yl)octa-1,6-dien-1-yl)oxy)silane (2i). Prepared according to the general procedure C employing $1 \mathrm{i}(1.0964 \mathrm{~g}$, 4.1 mmol$)$, LDA (2 M in THF, $2.6 \mathrm{~mL}, 5.2$ mmol), TBDMSOTf ($1.4 \mathrm{~mL}, 6.0 \mathrm{mmol}$) and THF (8 mL) as starting materials to afford $\mathbf{2 i}(0.9371 \mathrm{~g}, 2.4 \mathrm{mmol}, 60 \%$ yield $)$ as a colorless oil. IR ν 2929, 2856, 1646, 1467, $1255 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.94(\mathrm{~s}, 1 \mathrm{H}), 7.84(\mathrm{dd}, J=6.8,6.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.79(\mathrm{~d}, J=8.6$ $\mathrm{Hz}, 1 \mathrm{H}), 7.63(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.51-7.45(\mathrm{~m}, 2 \mathrm{H}), 5.33(\mathrm{t}, J=7.2$ $\mathrm{Hz}, 1 \mathrm{H}), 5.22(\mathrm{t}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.34-2.29(\mathrm{~m}, 2 \mathrm{H}), 2.15-2.10(\mathrm{~m}$, $2 \mathrm{H}), 1.76(\mathrm{~s}, 3 \mathrm{H}), 1.68(\mathrm{~s}, 3 \mathrm{H}), 1.59-1.51(\mathrm{~m}, 2 \mathrm{H}), 1.08(\mathrm{~s}, 9 \mathrm{H}), 0.03$ $(\mathrm{s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 149.2,137.2,133.2,132.8$, 131.5, 128.1, 127.6, 127.4, 126.0, 125.7, 124.6, 124.34, 124.33, 112.7, 29.9, 27.9, 26.0, 25.9, 25.8, 18.4, 17.7, -4.0; HRMS (EI-TOF) Calcd for $\mathrm{C}_{25} \mathrm{H}_{36} \mathrm{OSi}[\mathrm{M}]^{+}: 380.2535$, found 380.2531 .
(Z)-2-(1-((tert-Butyldimethylsilyl)oxy)-7-methylocta-1,6-dien-1-$y()$-1-methyl-1H-indole (2j). Prepared according to the general procedure C employing $\mathbf{1 j}$ ($1.1314 \mathrm{~g}, 4.2 \mathrm{mmol}$), LDA (2 M in THF, $2.3 \mathrm{~mL}, 5.5 \mathrm{mmol})$, TBDMSOTf ($1.4 \mathrm{~mL}, 6.3 \mathrm{mmol}$) and THF $(8 \mathrm{~mL})$ as starting materials to afford $2 \mathbf{j}(1.1184 \mathrm{~g}, 2.9 \mathrm{mmol}, 69 \%$ yield) as a colorless oil. IR $\nu 2929,2857,1661,1465,1254 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.59(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.33-7.21(\mathrm{~m}$, $2 \mathrm{H}), 7.21(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.44(\mathrm{~s}, 1 \mathrm{H}), 5.20(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H})$, $5.12(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 2.29-2.23(\mathrm{~m}, 2 \mathrm{H}), 2 .-2.06(\mathrm{~m}$, $2 \mathrm{H}), 1.74(\mathrm{~s}, 3 \mathrm{H}), 1.66(\mathrm{~s}, 3 \mathrm{H}), 1.54-1.46(\mathrm{~m}, 2 \mathrm{H}), 0.97(\mathrm{~s}, 9 \mathrm{H})$, $-0.13(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 141.9,139.7,137.6$, 131.6, 127.5, 124.5, 121.7, 120.6, 119.5, 116.8, 109.2, 101.4, 30.9, 29.7, 27.8, 25.8, 25.7, 25.3, 18.1, 17.7, -5.1; HRMS (EI-TOF) Calcd for $\mathrm{C}_{24} \mathrm{H}_{37} \mathrm{NOSi}[\mathrm{M}]^{+}$: 383.2644, found 383.2643.
(Z)-2-(1-((tert-Butyldimethylsilyl)oxy)-7-methylocta-1,6-dien-1$y l)$-1,5-dimethyl-1H-indole ($2 k$). Prepared according to the general procedure C employing $\mathbf{1 k}(0.4757 \mathrm{~g}, 1.24 \mathrm{mmol})$, LDA (2 M in THF, $0.8 \mathrm{~mL}, 1.6 \mathrm{mmol})$, TBDMSOTf ($0.5 \mathrm{~mL}, 1.9 \mathrm{mmol}$) and THF (6 mL) as starting materials to afford $\mathbf{2 k}(0.4091 \mathrm{~g}, 1.0 \mathrm{mmol}, 83 \%$ yield) as a colorless oil. IR $\nu 2928,2856,1661,1253 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.38(\mathrm{~s}, 1 \mathrm{H}), 7.20(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.06(\mathrm{dd}, J=$ $8.4,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.36(\mathrm{~s}, 1 \mathrm{H}), 5.23-5.19(\mathrm{~m}, 1 \mathrm{H}), 5.11(\mathrm{t}, J=7.4 \mathrm{~Hz}$, $1 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 2.47(\mathrm{~s}, 3 \mathrm{H}), 2.29-2.23(\mathrm{~m}, 2 \mathrm{H}), 2.012-2.06(\mathrm{~m}$, $2 \mathrm{H}), 1.75(\mathrm{~s}, 3 \mathrm{H}), 1.66(\mathrm{~s}, 3 \mathrm{H}), 1.54-1.47(\mathrm{~m}, 2 \mathrm{H}), 0.98(\mathrm{~s}, 9 \mathrm{H})$, $-0.12(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 142.0,139.7,136.1$, 131.5, 128.6, 127.7, 124.6, 123.3, 120.3, 116.5, 108.9, 100. 9, 30.9, 29.7, 27.8, 25.8, 25.7, 25.3, 21.4, 18.1, 17.7, -5.1; HRMS (EI-TOF) Calcd for $\mathrm{C}_{25} \mathrm{H}_{39} \mathrm{NOSi}[\mathrm{M}]^{+}: 397.2801$, found 397.2807.
(Z)-Diethyl-2-(3-((tert-butyldimethylsilyl)oxy)-3-phenylallyl)-2-(3-methylbut-2-en-1-yl)malonate (2I). Prepared according to the general procedure C employing $1 \mathbf{1}(0.9682 \mathrm{~g}, 2.7 \mathrm{mmol})$, LDA (2 M in THF, $1.6 \mathrm{~mL}, 3.2 \mathrm{mmol}$), TBDMSOTf ($0.87 \mathrm{~mL}, 3.8 \mathrm{mmol}$) and THF (6 mL) as starting materials to afford $21(1.1175 \mathrm{~g}, 2.4 \mathrm{mmol}$, 88% yield) as a colorless oil. IR $\nu 2931,2859,1731,1648,1253 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.42(\mathrm{dd}, J=8.0,1.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.28-$ $7.26(\mathrm{~m}, 3 \mathrm{H}), 5.10-5.07(\mathrm{~m}, 1 \mathrm{H}), 5.00(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.21(\mathrm{q}, J=$ $6.4 \mathrm{~Hz}, 4 \mathrm{H}), 2.85(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.66(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.74(\mathrm{~s}$, $3 \mathrm{H}), 1.65(\mathrm{~s}, 3 \mathrm{H}), 1.27(\mathrm{t}, J=7.2 \mathrm{~Hz}, 6 \mathrm{H}), 1.04(\mathrm{~s}, 9 \mathrm{H}),-0.00(\mathrm{~s}$, $6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.4,151.8,139.4,135.2$, 127.8, 127.6, 125.9, 118.1, 105.0, 61.0, 57.6, 31.4, 29.4, 27.0, 25.8, 18.2, 17.8, 14.0, -4.1; HRMS (EI-TOF) Calcd for $\mathrm{C}_{27} \mathrm{H}_{42} \mathrm{O}_{5} \mathrm{Si}[\mathrm{M}]^{+}$: 474.2802, found 474.2804.
(Z)-tert-Butyl((3,7-dimethyl-1-phenylocta-1,6-dien-1-yl)oxy)dimethylsilane ${ }^{13}(2 m)$. Prepared according to the general procedure C employing 1m ($0.9192 \mathrm{~g}, 4.0 \mathrm{mmol}$), LDA (2 M in THF, 2.6 mL , $5.2 \mathrm{mmol})$, TBDMSOTf ($1.4 \mathrm{~mL}, 6.0 \mathrm{mmol}$) and THF (6 mL) as starting materials to afford $2 \mathrm{~m}(1.1077 \mathrm{~g}, 3.2 \mathrm{mmol}, 81 \%$ yield) as a colorless oil. IR $\nu 2957,2858,1648,1255 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (400 MHz ,
$\left.\mathrm{CDCl}_{3}\right) \delta 7.43(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.30-7.22(\mathrm{~m}, 3 \mathrm{H}), 5.18-5.14(\mathrm{~m}$, $1 \mathrm{H}), 4.88(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.77-2.66(\mathrm{~m}, 1 \mathrm{H}), 2.06-2.00(\mathrm{~m}$, $2 \mathrm{H}), 1.70(\mathrm{~s}, 3 \mathrm{H}), 1.62(\mathrm{~s}, 3 \mathrm{H}), 1.41-1.31(\mathrm{~m}, 2 \mathrm{H}), 1.03(\mathrm{~d}, J=6.8$ $\mathrm{Hz}, 3 \mathrm{H}), 1.00(\mathrm{~s}, 9 \mathrm{H}),-0.02(\mathrm{~s}, 3 \mathrm{H}),-0.07(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 148.4,140.1,131.0,127.8,127.3,126.2,125.0,118.4$, 37.9, 30.0, 26.0, 25.9, 25.7, 20.8, 18.3, 17.6, -4.0, -4.1; HRMS (EITOF) Calcd for $\mathrm{C}_{22} \mathrm{H}_{36} \mathrm{OSi}[\mathrm{M}]^{+}: 344.2535$, found 344.2534 .
(Z)-tert-Butyldimethyl((8-methyl-1-phenyInona-1,7-dien-1-yl)oxy)silane (2n). Prepared according to the general procedure C employing $\ln (0.5868 \mathrm{~g}, 2.5 \mathrm{mmol})$, LDA (2 M in THF, $1.5 \mathrm{~mL}, 3.0$ mmol), TBDMSOTf ($0.8 \mathrm{~mL}, 3.5 \mathrm{mmol}$) and THF (5 mL) as starting materials to afford $2 \mathrm{n}(0.7785 \mathrm{~g}, 2.2 \mathrm{mmol}, 89 \%$ yield) as a colorless oil. IR $\nu 2928,2856,1689,1256 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 7.44-7.41 (m, 2H), 7.29-7.19 (m, 3H), 5.15-5.08 (m, 2H), 2.22$2.17(\mathrm{~m}, 2 \mathrm{H}), 2.02-1.97(\mathrm{~m}, 2 \mathrm{H}), 1.69(\mathrm{~s}, 3 \mathrm{H}), 1.60(\mathrm{~s}, 3 \mathrm{H}), 1.44-$ 1.36 (m, 4H), 0.98 ($\mathrm{s}, 9 \mathrm{H}$), -0.05 ($\mathrm{s}, 6 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 149.2,139.9,131.2,127.8,127.3,125.9,124.8,112.0,29.8$, 29.4, 28.0, 26.1, 25.9, 25.7, 18.3, 17.7, -4.1; HRMS (EI-TOF) Calcd for $\mathrm{C}_{22} \mathrm{H}_{36} \mathrm{OSi}[\mathrm{M}]^{+}: 344.2535$, found 344.2534 .
(Z)-tert-Butyldimethyl((6-methyl-1-phenylhepta-1,5-dien-1-yl)oxy)silane (20). Prepared according to the general procedure C employing $1 \mathrm{o}(1.0135 \mathrm{~g}, 5.0 \mathrm{mmol})$, LDA (2 M in THF, $2.2 \mathrm{~mL}, 4.5$ mmol), TBDMSOTf ($1.05 \mathrm{~mL}, 4.5 \mathrm{mmol}$) and THF (6 mL) as starting materials to afford $2 \mathrm{o}(1.0713 \mathrm{~g}, 3.0 \mathrm{mmol}, 66 \%$ yield) as a colorless oil. IR ν 2929, 2857, 1650, $1255 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.49-7.45(\mathrm{~m}, 2 \mathrm{H}), 7.31-7.21(\mathrm{~m}, 3 \mathrm{H}), 5.19(\mathrm{t}, J=6.8 \mathrm{~Hz}$, $1 \mathrm{H}), 5.12(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.27-2.22(\mathrm{~m}, 2 \mathrm{H}), 2.14-2.08(\mathrm{~m} 2 \mathrm{H})$, $1.72(\mathrm{~s}, 3 \mathrm{H}), 1.64(\mathrm{~s}, 3 \mathrm{H}), 0.99(\mathrm{~s}, 9 \mathrm{H}),-0.04(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 149.3,139.9,131.7,127.9,127.3,125.9,124.3$, 111.6, 28.2, 26.5, 25.9, 25.8, 18.3, 17.8, -4.0; HRMS (EI-TOF) Calcd for $\mathrm{C}_{20} \mathrm{H}_{32} \mathrm{OSi}[\mathrm{M}]^{+}: 316.2222$, found 316.2222 .
tert-Butyldimethyl(((1Z,5E/Z)-1-phenylocta-1,5-dien-1-yl)oxy)silane 13 (2p). Prepared according to the general procedure C employing (Z / E)-1-phenylnon-6-en-1-one ($1.0166 \mathrm{~g}, 4.7 \mathrm{mmol}$), LDA (2 M in THF, $3.1 \mathrm{~mL}, 6.2 \mathrm{mmol}$), TBDMSOTf ($1.5 \mathrm{~mL}, 7.0$ mmol) and THF (9 mL) as starting materials to afford the title compound ($1.1343 \mathrm{~g}, 3.4 \mathrm{mmol}, 73 \%$ yield) as a colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.44(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.32-7.25(\mathrm{~m}, 3 \mathrm{H})$, $5.49-5.32(\mathrm{~m}, 2 \mathrm{H}), 5.12(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.29-2.20(\mathrm{~m}, 2 \mathrm{H})$, $2.15-1.98(\mathrm{~m}, 4 \mathrm{H}), 1.56-1.46(\mathrm{~m}, 2 \mathrm{H}), 1.03-0.95(\mathrm{~m}, 12 \mathrm{H}),-0.04$ $(\mathrm{s}, 6 \mathrm{H})$. Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{34} \mathrm{OSi}: \mathrm{C}, 76.30 ; \mathrm{H}, 10.37$. Found C, 76.15; H, 10.04.

General Procedure for Oxidative [4 + 2] Cycloaddition of Aryl Silyl Enol Ethers. To a 50 mL flame-dried Schlenk flask containing $4 \AA$ MS (100 wt \%) cooled under $\mathrm{N}_{2},\left(\mathrm{NH}_{4}\right)_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$ (3 equiv), $\mathrm{Ru}(\mathrm{bpy})_{3}\left(\mathrm{PF}_{6}\right)_{2}(1.5 \mathrm{~mol} \%), 2(0.3 \mathrm{mmol})$ and MeOH (6 mL) were added. The mixture was degassed through three freeze-pump-thaw cycles under N_{2}. The reaction was placed at room temperature and stirred in front of a 18 W compact fluorescent lamp at a distance of 15 cm for 17 h . The reaction was diluted with $\mathrm{Et}_{2} \mathrm{O}$ and filtered through a short pad of silica using $\mathrm{Et}_{2} \mathrm{O}$. The filtrate was concentrated in vacuo before it was purified by flash chromatography on silica gel to afford 3 .

To a 50 mL flame-dried Schlenk flask cooled under N_{2}, 2,4dinitrofenylhydrazin, Cat. $\mathrm{H}_{2} \mathrm{SO}_{4}$ (con.) (two drops), MeOH (3 mL) was added. The mixture was stirred at $50{ }^{\circ} \mathrm{C}$ for 15 min . Then 3 (without purification) dissolved in $\mathrm{MeOH}(6 \mathrm{~mL})$ was added via syringe. The mixture was stirred for another 4 h at $50^{\circ} \mathrm{C}$. After cooled to room temperature, the solid was filtered and washed by small amount of MeOH , dried in vacuo, affording the title compound 4.
(E)-1-(9,9-Dimethyl-3,3a,9,9a-tetrahydro-1H-cyclopenta[b]-naphthalen-4(2H)-ylidene)-2-(2,4-dinitrophenyl)hydrazine (4a). Prepared according to the general procedure employing $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$ $(0.2122 \mathrm{~g}, 0.92 \mathrm{mmol}), 4 \AA \mathrm{MS}(0.0902 \mathrm{~g}), \mathrm{Ru}(\mathrm{bpy})_{3}\left(\mathrm{PF}_{6}\right)_{2}(0.0043 \mathrm{~g}$, $0.005 \mathrm{mmol})$, 2a $(0.0866 \mathrm{~g}, 0.29 \mathrm{mmol})$ and $\mathrm{MeOH}(6 \mathrm{~mL})$. After 17 h , the reaction was diluted with $\mathrm{Et}_{2} \mathrm{O}$ and passed through a short pad of silica using $\mathrm{Et}_{2} \mathrm{O}$. The filtrate was concentrated in vacuo. The crude mixture was monitored by ${ }^{1} \mathrm{H}$ NMR $(d r=5: 1)$, and then condensed with DNP ($0.1123 \mathrm{~g}, 0.57 \mathrm{mmol}$) in $\mathrm{MeOH}(9 \mathrm{~mL})$ affording 4 a as a red solid ($0.6557 \mathrm{~g}, 0.164 \mathrm{mmol}, 57 \%$ yield) by filtration and washed
by $\mathrm{MeOH} . \mathrm{mp}=206-208{ }^{\circ} \mathrm{C}$; IR $\nu 3331,3109,1615,1589,1335$ cm^{-1}; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 11.49(\mathrm{~s}, 1 \mathrm{H}), 9.14(\mathrm{~d}, J=2.4$ $\mathrm{Hz}, 1 \mathrm{H}), 8.34(\mathrm{dd}, J=9.6,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.28(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.15$ $(\mathrm{d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.39(\mathrm{dd}, J=7.6,7.6 \mathrm{~Hz}$, $1 \mathrm{H}), 7.29(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.97-2.91(\mathrm{~m}, 1 \mathrm{H}), 2.75-2.67(\mathrm{~m}, 1 \mathrm{H})$, $2.09-1.75(\mathrm{~m}, 6 \mathrm{H}), 1.45(\mathrm{~s}, 3 \mathrm{H}), 1.13(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 155.2,150.4,145.0,137.9,132.2,130.1,129.9,129.6,126.2$, 126.1, 125.0, 123.5, 116.8, 53.2, 40.5, 36.3, 27.3, 23.9, 22.9, 22.1; HRMS (EI-TOF) Calcd for $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{O}_{4}[\mathrm{M}]^{+}$: 394.1641, found 394.1642.
(E)-1-(2,4-Dinitrophenyl)-2-(7-methoxy-9,9-dimethyl-3,3a,9,9a-tetrahydro-1H-cyclopenta[b]naphthalen-4(2H)-ylidene)hydrazine (4b). Prepared according to the general procedure employing $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{~S}_{2} \mathrm{O}_{8}(0.2065 \mathrm{~g}, 0.90 \mathrm{mmol}), 4 \AA \mathrm{MS}(0.1132 \mathrm{~g})$, Ru(bpy) $)_{3}\left(\mathrm{PF}_{6}\right)_{2}(0.0042 \mathrm{~g}, 0.005 \mathrm{mmol}), 2 \mathrm{~b}(0.1023 \mathrm{~g}, 0.28 \mathrm{mmol})$ and $\mathrm{MeOH}(6 \mathrm{~mL})$. After 17 h , the reaction was diluted with $\mathrm{Et}_{2} \mathrm{O}$ and passed through a short pad of silica using $\mathrm{Et}_{2} \mathrm{O}$. The filtrate was concentrated in vacuo. The crude mixture was monitored by ${ }^{1} \mathrm{H}$ NMR ($d r=7: 1$) and then condensed with DNP ($0.1123 \mathrm{~g}, 0.57 \mathrm{mmol}$) in $\mathrm{MeOH}(9 \mathrm{~mL})$ to afford the red solid $(0.0754 \mathrm{~g}, 0.172 \mathrm{mmol}, 61 \%$ yield) by filtration and washed by $\mathrm{MeOH} . \mathrm{mp}=156-157^{\circ} \mathrm{C}$; IR ν 3314, 2958, 1614, 1589, $1334 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $11.49(\mathrm{~s}, 1 \mathrm{H}), 9.15(\mathrm{~s}, 1 \mathrm{H}), 8.31(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.11(\mathrm{~d}, J=9.2$ $\mathrm{Hz}, 1 \mathrm{H}), 7.85(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.95-6.75(\mathrm{~m}, 2 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H})$, $3.56-3.36(\mathrm{~m}, 1 \mathrm{H}), 2.73-2.55(\mathrm{~m}, 1 \mathrm{H}), 2.41-2.25(\mathrm{~m}, 1 \mathrm{H}), 1.87-$ $1.72(\mathrm{~m}, 1 \mathrm{H}), 1.70-1.50(\mathrm{~m}, 3 \mathrm{H}), 1.44(\mathrm{~s}, 3 \mathrm{H}), 1.18(\mathrm{~s}, 3 \mathrm{H}), 1.06-$ $0.85(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 161.7,157.9,148.5$, 144.8, 137.6, 129.9, 129.3, 128.2, 124.0, 123.6, 116.7, 111.5, 111.1, 55.3, 51.9, 37.3, 36.6, 32.3, 31.1, 29.4, 26.3, 25.8; HRMS (EI-TOF) Calcd for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{~N}_{4} \mathrm{O}_{5}[\mathrm{M}]^{+}$: 424.1747, found 424.1743.
($3 a * R, 9 a * R$)-8-Methoxy-9,9-dimethyl-3,3a,9,9a-tetrahydro-1H-cyclopenta[b]naphthalen-4(2H)-one (3c). Prepared according to the general procedure employing $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{~S}_{2} \mathrm{O}_{8}(0.2002 \mathrm{~g}, 0.88 \mathrm{mmol}), 4 \AA$ MS $(0.0912 \mathrm{~g}), \mathrm{Ru}(\mathrm{bpy})_{3}\left(\mathrm{PF}_{6}\right)_{2}(0.0046 \mathrm{~g}, 0.005 \mathrm{mmol}), 2 \mathrm{c}(0.1039 \mathrm{~g}$, $0.29 \mathrm{mmol})$ and $\mathrm{MeOH}(6 \mathrm{~mL})$. After 17 h , the reaction was diluted with $\mathrm{Et}_{2} \mathrm{O}$ and passed through a short pad of silica using $\mathrm{Et}_{2} \mathrm{O}$. The filtrate was concentrated in vacuo. The crude mixture was monitored by ${ }^{1} \mathrm{H}$ NMR ($d r>20: 1$), and then purified by flash column chromatography using $50: 1 \mathrm{PE} / \mathrm{EtOAc}$ as the eluent to give 3 c $(0.0161 \mathrm{~g}, 0.066 \mathrm{mmol}, 23 \%$ yield $)$ as a white solid and $3 \mathrm{c}^{\prime}(0.0467 \mathrm{~g}$, $0.191 \mathrm{mmol}, 66 \%$ yield) as a white solid. $\mathrm{mp}=108-110{ }^{\circ} \mathrm{C}$; IR ν 2959, 2874, 1694, 1664, $1260 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $7.66(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.27(\mathrm{dd}, J=8.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.07(\mathrm{~d}, J=8.0$ $\mathrm{Hz}, 1 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 2.74-2.60(\mathrm{~m}, 1 \mathrm{H}), 2.10-1.85(\mathrm{~s}, 5 \mathrm{H}), 1.84-$ $1.73(\mathrm{~m}, 1 \mathrm{H}), 1.72-1.64(\mathrm{~m}, 1 \mathrm{H}), 1.53(\mathrm{~s}, 3 \mathrm{H}), 1.36(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 200.4,158.5,140.8,134.7,127.1,119.6$, 116.2, 55.4, 54.2, 48.3, 38.0, 27.5, 26.4, 23.4, 22.6, 17.8; HRMS (EITOF) Calcd for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{O}_{2}[\mathrm{M}]^{+}$: 244.1463, found 244.1467.
($3 a * R, 9 a * R$)-6-Methoxy-9,9-dimethyl-3,3a,9,9a-tetrahydro-1H-cyclopenta[b]naphthalen-4(2H)-one (3c'). mp $=102-104{ }^{\circ} \mathrm{C}$; IR ν 2874, 2839, 1691, $1251 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.49(\mathrm{~d}$, $J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{dd}, J=8.8,2.8 \mathrm{~Hz}$, $1 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 2.76-2.63(\mathrm{~m}, 1 \mathrm{H}), 2.11-1.85(\mathrm{~m}, 4 \mathrm{H}), 1.84-1.75$ $(\mathrm{m}, 1 \mathrm{H}), 1.74-1.62(\mathrm{~m}, 1 \mathrm{H}), 1.55-1.47(\mathrm{~m}, 1 \mathrm{H}), 1.40(\mathrm{~s}, 3 \mathrm{H}), 1.23$ $(\mathrm{s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 200.1,157.8,146.4,133.4$, 127.6, 121.4, 109.1, 55.4, 53.2, 49.3, 37.1, 29.1, 26.5, 24.0, 23.1, 22.2; HRMS (EI-TOF) Calcd for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{O}_{2}[\mathrm{M}]^{+}$: 244.1463, found 244.1468.
($3 a * R, 9 a * R$)-5-Methoxy-9,9-dimethyl-3,3a,9,9a-tetrahydro-1H-cyclopenta[b]naphthalen-4(2H)-one (3d). Prepared according to the general procedure employing $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{~S}_{2} \mathrm{O}_{8}(0.1999 \mathrm{~g}, 0.88 \mathrm{mmol}), 4 \AA$ MS $(0.1073 \mathrm{~g}), \mathrm{Ru}(\mathrm{bpy})_{3}\left(\mathrm{PF}_{6}\right)_{2}(0.0041 \mathrm{~g}, 0.005 \mathrm{mmol}), 2 \mathrm{~d}(0.1068$ $\mathrm{g}, 0.30 \mathrm{mmol})$ and $\mathrm{MeOH}(6 \mathrm{~mL})$. After 17 h , the reaction was diluted with $\mathrm{Et}_{2} \mathrm{O}$ and passed through a short pad of silica using $\mathrm{Et}_{2} \mathrm{O}$. The filtrate was concentrated in vacuo. The crude mixture was monitored by ${ }^{1} \mathrm{H}$ NMR $(d r=20: 1)$, and then purified by flash column chromatography using $10: 1 \mathrm{PE} / \mathrm{EtOAc}$ as the eluent to give 3 d $(0.0399 \mathrm{~g}, 0.1633 \mathrm{mmol}, 55 \%$ yield) as a white solid. $\mathrm{mp}=106-108$ ${ }^{\circ} \mathrm{C}$; IR ν 2962, 2874, 1693, 1592, $1467 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.41(\mathrm{dd}, J=8.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.05(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.80$
$(\mathrm{d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 2.77-2.65(\mathrm{~m}, 1 \mathrm{H}), 2.17-2.06(\mathrm{~m}$, $1 \mathrm{H}), 2.06-1.96(\mathrm{~m}, 1 \mathrm{H}), 1.91-1.81(\mathrm{~m}, 2 \mathrm{H}), 1.80-1.61(\mathrm{~m}, 2 \mathrm{H})$, $1.60-1.49(\mathrm{~m}, 1 \mathrm{H}), 1.39(\mathrm{~s}, 3 \mathrm{H}), 1.25(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 199.7,159.4,156.0,133.3,122.7,118.8,109.5,56.0,53.8$, 50.6, 38.4, 29.9, 27.0, 23.9, 23.2, 22.4; HRMS (EI-TOF) Calcd for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{O}_{2}[\mathrm{M}]^{+}$: 244.1463, found 244.1459.
($3 a * R, 9 a R$)-7-Ethyl-9,9-dimethyl-3,3a,9,9a-tetrahydro-1H-cyclopenta[b]naphthalen-4(2H)-one (3e). Prepared according to the general procedure employing $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{~S}_{2} \mathrm{O}_{8}(0.2108 \mathrm{~g}, 0.88 \mathrm{mmol}), 4 \AA$ MS $(0.1132 \mathrm{~g}), \mathrm{Ru}(\mathrm{bpy})_{3}\left(\mathrm{PF}_{6}\right)_{2}(0.0048 \mathrm{~g}, 0.005 \mathrm{mmol}), 2 \mathrm{eb}(0.1132$ $\mathrm{g}, 0.28 \mathrm{mmol})$ and $\mathrm{MeOH}(6 \mathrm{~mL})$. After 17 h , the reaction was diluted with $\mathrm{Et}_{2} \mathrm{O}$ and passed through a short pad of silica using $\mathrm{Et}_{2} \mathrm{O}$. The filtrate was concentrated in vacuo. The crude mixture was monitored by ${ }^{1} \mathrm{H}$ NMR $(d r=10: 1)$, and then purified by flash column chromatography using $60: 1 \mathrm{PE} / \mathrm{EtOAc}$ as the eluent to give 3 e $(0.0649 \mathrm{~g}, 0.268 \mathrm{mmol}, 95 \%$ yield, $d r=10: 1)$ as a white solid.

When employing $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{~S}_{2} \mathrm{O}_{8}(0.2021 \mathrm{~g}, 0.88 \mathrm{mmol}), 4 \AA \mathrm{MS}$ $(0.1013 \mathrm{~g}), \mathrm{Ru}(\mathrm{bpy})_{3}\left(\mathrm{PF}_{6}\right)_{2}(0.0040 \mathrm{~g}, 0.005 \mathrm{mmol})$, 2ea $(0.1013 \mathrm{~g}$, $0.28 \mathrm{mmol})$ and $\mathrm{MeOH}(6 \mathrm{~mL})$ as starting materials, affording 3 e $(0.0441 \mathrm{~g}, 0.18 \mathrm{mmol}, 64 \%$ yield, $d r=4: 1)$.

When employing $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{~S}_{2} \mathrm{O}_{8}(0.2104 \mathrm{~g}, 0.88 \mathrm{mmol}), 4 \AA \mathrm{MS}$ $(0.1113 \mathrm{~g}), \mathrm{Ru}(\text { bpy })_{3}\left(\mathrm{PF}_{6}\right)_{2}(0.0042 \mathrm{~g}, 0.005 \mathrm{mmol}), 2(0.1007 \mathrm{~g}, 0.28$ $\mathrm{mmol})$ and $\mathrm{MeOH}(6 \mathrm{~mL})$ as starting materials, affording $3 \mathrm{e}(0.0608$ g, $d r=10: 1,0.25 \mathrm{mmol}, 89 \%$ yield).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.95(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.28(\mathrm{~d}, J$ $=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.13(\mathrm{dd}, J=8.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.73-2.63(\mathrm{~m}, 3 \mathrm{H})$, 2.09-1.99 (m, 2H), 1.98-1.84 (m, 2H), 1.83-1.63 (m, 2H), 1.61$1.48(\mathrm{~m}, 1 \mathrm{H}), 1.42(\mathrm{~s}, 3 \mathrm{H}), 1.30-1.22(\mathrm{~m}, 6 \mathrm{H})$. Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{O}: \mathrm{C}, 84.25 ; \mathrm{H}, 9.15$. Found C, 83.90; H, 8.91.
(E)-1-(2,4-Dinitrophenyl)-2-(7-fluoro-9,9-dimethyl-3,3a,9,9a-tet-rahydro-1H-cyclopenta[b]naphthalen-4(2H)-ylidene)hydrazine (4f). Prepared according to the general procedure employing $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$ ($0.2063 \mathrm{~g}, 0.90 \mathrm{mmol}), 4 \AA \mathrm{MS}(0.1050 \mathrm{~g}), \mathrm{Ru}(\mathrm{bpy})_{3}\left(\mathrm{PF}_{6}\right)_{2}(0.0044 \mathrm{~g}$, $0.005 \mathrm{mmol}), 2 \mathrm{f}(0.1002 \mathrm{~g}, 0.288 \mathrm{mmol})$ and $\mathrm{MeOH}(6 \mathrm{~mL})$. After 17 h , the reaction was diluted with $\mathrm{Et}_{2} \mathrm{O}$ and passed through a short pad of silica using $\mathrm{Et}_{2} \mathrm{O}$. The filtrate was concentrated in vacuo. The crude mixture was monitored by ${ }^{1} \mathrm{H}$ NMR $(d r=5: 1)$, and then condensed with DNP $(0.1181 \mathrm{~g}, 0.60 \mathrm{mmol})$ in $\mathrm{MeOH}(9 \mathrm{~mL})$ affording the red solid ($0.0601 \mathrm{~g}, 0.146 \mathrm{mmol}, 49 \%$ yield) by filtration and washed by MeOH. $\mathrm{mp}=241-243{ }^{\circ} \mathrm{C}$; IR $\nu 3335,2963,1617,1589,1337 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 11.47(\mathrm{~s}, 1 \mathrm{H}), 9.15(\mathrm{~s}, 1 \mathrm{H}), 8.36(\mathrm{~d}, J$ $=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.27(\mathrm{dd}, J=8.8,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.11(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H})$, $7.11(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.04-6.94(\mathrm{~m}, 1 \mathrm{H}), 3.02-2.86(\mathrm{~m}, 1 \mathrm{H})$, $2.77-2.61(\mathrm{~m}, 1 \mathrm{H}), 2.08-1.71(\mathrm{~m}, 6 \mathrm{H}), 1.43(\mathrm{~s}, 3 \mathrm{H}), 1.12(\mathrm{~s}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 164.1(\mathrm{~d}, J=251.5 \mathrm{~Hz}), 154.3,153.2$ (d, $J=7.1 \mathrm{~Hz}$), 145.0, 138.0, 130.0, 129.6, 128.5, 128.4, 123.6, 116.7, $113.7(\mathrm{~d}, J=22.2 \mathrm{~Hz}), 111.7(\mathrm{~d}, J=22.2 \mathrm{~Hz}), 53.1,40.5,36.6,30.9$, 27.2, 23.9, 22.8 22.1; ${ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-110.2$; HRMS (EI-TOF) Calcd for $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{O}_{4} \mathrm{~N}_{4} \mathrm{~F}[\mathrm{M}]^{+}: 412.1547$, found 412.1549.
(E)-1-(7-Bromo-9,9-dimethyl-3,3a,9,9a-tetrahydro-1H-cyclopenta[b]naphthalen-4(2H)-ylidene)-2-(2,4-dinitrophenyl)hydrazine (4 g). Prepared according to the general procedure employing $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{~S}_{2} \mathrm{O}_{8}(0.2038 \mathrm{~g}, 0.90 \mathrm{mmol}), 4 \AA \mathrm{MS}(0.1161 \mathrm{~g})$, $\mathrm{Ru}(\mathrm{bpy})_{3}\left(\mathrm{PF}_{6}\right)_{2}(0.0044 \mathrm{~g}, 0.005 \mathrm{mmol}), 2 \mathrm{~g}(0.1262 \mathrm{~g}, 0.308 \mathrm{mmol})$ and $\mathrm{MeOH}(6 \mathrm{~mL})$. After 17 h , the reaction was diluted with $\mathrm{Et}_{2} \mathrm{O}$ and passed through a short pad of silica using $\mathrm{Et}_{2} \mathrm{O}$. The filtrate was concentrated in vacuo. The crude mixture was monitored by ${ }^{1} \mathrm{H}$ NMR $(d r=3: 1)$, and then condensed with DNP $(0.1179 \mathrm{~g}, 0.60 \mathrm{mmol})$ in $\mathrm{MeOH}(9 \mathrm{~mL})$ affording $\mathbf{~} \mathrm{g}(0.0582 \mathrm{~g}, 0.123 \mathrm{mmol}, 40 \%$ yield) as a red solid by filtration and washed by MeOH. $\mathrm{mp}=195-198^{\circ} \mathrm{C}$; IR ν 3329, 2923, 2855, 1724, 1614, 1589, $1334 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 11.48(\mathrm{~s}, 1 \mathrm{H}), 9.15(\mathrm{~s}, 1 \mathrm{H}), 8.37(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.12$ $(\mathrm{dd}, J=9.6,8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.56(\mathrm{~s}, 1 \mathrm{H}), 7.41(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.03-$ $2.85(\mathrm{~m}, 1 \mathrm{H}), 2.77-2.58(\mathrm{~m}, 1 \mathrm{H}), 2.10-1.72(\mathrm{~m}, 6 \mathrm{H}), 1.44(\mathrm{~s}, 3 \mathrm{H})$, $1.12(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 154.1, 152.2, 144.8, 138.1, 131.3, 130.0, 129.7, 129.5, 128.3, 127.8, 124.7, 123.5, 116.8, 53.0, 40.4, 36.6, 27.3, 27.2, 23.9, 22.8, 22.0; HRMS (EI-TOF) Calcd for $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{O}_{4} \mathrm{~N}_{4} \mathrm{Br}[\mathrm{M}]^{+}: 472.0746$, found 472.0744 .
($3 a * R, 9 a * R$)-5,8-Dimethoxy-9,9-dimethyl-3,3a,9,9a-tetrahydro1 H -cyclopenta[b]naphthalen-4(2H)-one (3h). Prepared according to
the general procedure employing $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{~S}_{2} \mathrm{O}_{8}(0.2101 \mathrm{~g}, 0.92 \mathrm{mmol})$, $4 \AA \mathrm{MS}(0.1073 \mathrm{~g}), \mathrm{Ru}(\mathrm{bpy})_{3}\left(\mathrm{PF}_{6}\right)_{2}(0.0042 \mathrm{~g}, 0.005 \mathrm{mmol})$, 2 h $(0.1038 \mathrm{~g}, 0.266 \mathrm{mmol})$ and $\mathrm{MeOH}(6 \mathrm{~mL})$. After 17 h , the reaction was diluted with $\mathrm{Et}_{2} \mathrm{O}$ and passed through a short pad of silica using $\mathrm{Et}_{2} \mathrm{O}$. The filtrate was concentrated in vacuo. The crude mixture was monitored by ${ }^{1} \mathrm{H}$ NMR $(d r>20: 1)$, and then purified by flash column chromatography using 5:1 PE/EtOAc as the eluent to give 3 h (0.0676 $\mathrm{g}, 0.246 \mathrm{mmol}, 93 \%$ yield) as a white solid. $\mathrm{mp}=159-160^{\circ} \mathrm{C}$; IR ν 2957, 2924, 1700, 1465, $1262 \mathrm{~cm}^{-1}$; 1 H NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $7.00(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.83(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.828(\mathrm{~s}, 3 \mathrm{H}), 3.825$ $(\mathrm{s}, 3 \mathrm{H}), 2.79-2.69(\mathrm{~m}, 1 \mathrm{H}), 2.25-2.16(\mathrm{~m}, 1 \mathrm{H}), 2.01-1.91(\mathrm{~m}, 1 \mathrm{H})$, $1.91-1.82(\mathrm{~m}, 1 \mathrm{H}), 1.81-1.70(\mathrm{~m}, 2 \mathrm{H}), 1.68-1.55(\mathrm{~m}, 2 \mathrm{H}), 1.50(\mathrm{~s}$, $3 \mathrm{H}), 1.36(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 200.0, 153.1, 152.2, 142.1, 125.0, 116.8, 111.4, 56.8, 55.84, 55.78, 50.1, 38.6, 27.8, 26.9, 23.1, 22.5, 18.6; HRMS (EI-TOF) Calcd for $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{O}_{3}[\mathrm{M}]^{+}$: 274.1569, found 274.1571.
$(3 a * R, 11 a * R)-11,11$-Dimethyl-3,3a,11,11a-tetrahydro-1H-cyclopenta[b]anthracen-4(2H)-one (3i). Prepared according to the general procedure employing $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{~S}_{2} \mathrm{O}_{8}(0.2120 \mathrm{~g}, 0.93 \mathrm{mmol}), 4 \AA$ MS $(0.1060 \mathrm{~g}), \mathrm{Ru}(\text { bpy })_{3}\left(\mathrm{PF}_{6}\right)_{2}(0.0042 \mathrm{~g}, 0.005 \mathrm{mmol}), 2 \mathrm{i}(0.1059 \mathrm{~g}$, $0.278 \mathrm{mmol})$ and $\mathrm{MeOH}(6 \mathrm{~mL})$. After 17 h , the reaction was diluted with $\mathrm{Et}_{2} \mathrm{O}$ and passed through a short pad of silica using $\mathrm{Et}_{2} \mathrm{O}$. The filtrate was concentrated in vacuo. The crude mixture was monitored by ${ }^{1} \mathrm{H}$ NMR ($d r>20: 1$), and then purified by flash column chromatography using 60:1 PE/EtOAc as the eluent to give $3 \mathbf{i}$ (0.0234 $\mathrm{g}, 0.088 \mathrm{mmol}, 32 \%$ yield) as a white solid. $\mathrm{mp}=113-115^{\circ} \mathrm{C}$; $\operatorname{IR} \nu$ 2960, 2875, 1689, 1463, $1221 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $8.59(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.14(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.90-7.83(\mathrm{~m}, 1 \mathrm{H})$, $7.75(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.57-7.50(\mathrm{~m}, 2 \mathrm{H}), 2.85-2.74(\mathrm{~m}, 1 \mathrm{H})$, $2.20-1.92(\mathrm{~m}, 4 \mathrm{H}), 1.91-1.79(\mathrm{~m}, 1 \mathrm{H}), 1.76(\mathrm{~s}, 3 \mathrm{H}), 1.74(\mathrm{~s}, 3 \mathrm{H})$, $1.73-1.66(\mathrm{~m}, 1 \mathrm{H}), 1.62-1.56(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 200.2,151.3,137.2,131.14,131.12,129.6,127.9,127.5$, 127.2, 125.3, 123.3, 55.7, 47.5, 39.1, 30.6, 26.6, 23.6, 22.7, 20.1; HRMS (EI-TOF) Calcd for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{O}[\mathrm{M}]^{+}: 264.1514$, found 264.1513.
$(3 a * R, 10 a * R)-5,10,10$-Trimethyl-1,2,3,3a,10,10a-hexahydrocyclopenta[b]carbazol-4(5H)-one (3j). Prepared according to the general procedure employing $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{~S}_{2} \mathrm{O}_{8}(0.2091 \mathrm{~g}, 0.92$ $\mathrm{mmol}), 4 \AA \mathrm{MS}(0.1082 \mathrm{~g}), \mathrm{Ru}(\mathrm{bpy})_{3}\left(\mathrm{PF}_{6}\right)_{2}(0.0040 \mathrm{~g}, 0.005 \mathrm{mmol})$, $2 \mathrm{j}(0.1061 \mathrm{~g}, 0.277 \mathrm{mmol})$ and $\mathrm{MeOH}(6 \mathrm{~mL})$. After 17 h , the reaction was diluted with $\mathrm{Et}_{2} \mathrm{O}$ and passed through a short pad of silica using $\mathrm{Et}_{2} \mathrm{O}$. The filtrate was concentrated in vacuo. The crude mixture was monitored by ${ }^{1} \mathrm{H}$ NMR $(d r>50: 1)$, and then purified by flash column chromatography using $50: 1 \mathrm{PE} / \mathrm{EtOAc}$ as the eluent to give 3 j ($0.0733 \mathrm{~g}, 0.274 \mathrm{mmol}, 99 \%$ yield) as a white solid. $\mathrm{mp}=174-176$ ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.90(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.40-$ $7.33(\mathrm{~m}, 2 \mathrm{H}), 7.15-7.10(\mathrm{~m}, 1 \mathrm{H}), 4.06(\mathrm{~s}, 3 \mathrm{H}), 2.84-2.74(\mathrm{~m}, 1 \mathrm{H})$, 2.25 (ddd, $J=13.6,12.0,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.11-1.99(\mathrm{~m}, 1 \mathrm{H}), 1.98-1.68$ $(\mathrm{m}, 4 \mathrm{H}), 1.64(\mathrm{~s}, 3 \mathrm{H}), 1.62-1.54(\mathrm{~m}, 1 \mathrm{H}), 1.39(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 194.9,138.9,136.8,130.3,128.9,127.5,123.6$, $121.9,110.3,56.0,50.4,35.5,31.3,28.7,25.4,23.6,22.2,21.6,20.9$; HRMS (EI-TOF) Calcd for $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{NO}[\mathrm{M}]^{+}$: 267.1623, found 267.1624.
$(3 a * R, 10 a * R)-5,8,10,10$-Tetramethyl-1,2,3,3a,10,10a-hexahydrocyclopenta[b]carbazol-4(5H)-one (3k). Prepared according to the general procedure employing $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{~S}_{2} \mathrm{O}_{8}(0.2057 \mathrm{~g}, 0.90$ $\mathrm{mmol}), 4 \AA \mathrm{MS}(0.1061 \mathrm{~g}), \mathrm{Ru}(\mathrm{bpy})_{3}\left(\mathrm{PF}_{6}\right)_{2}(0.0040 \mathrm{~g}, 0.005 \mathrm{mmol})$, $\mathbf{2 k}(0.1151 \mathrm{~g}, 0.29 \mathrm{mmol})$ and $\mathrm{MeOH}(6 \mathrm{~mL})$. After 17 h , the reaction was diluted with $\mathrm{Et}_{2} \mathrm{O}$ and passed through a short pad of silica using $\mathrm{Et}_{2} \mathrm{O}$. The filtrate was concentrated in vacuo. The crude mixture was monitored by ${ }^{1} \mathrm{H}$ NMR $(d r>50: 1)$, and then purified by flash column chromatography using $50: 1 \mathrm{PE} / \mathrm{EtOAc}$ as the eluent to give 3 k ($0.0734 \mathrm{~g}, 0.261 \mathrm{mmol}, 90 \%$ yield) as a white solid. $\mathrm{mp}=128-129$ ${ }^{\circ} \mathrm{C}$; IR ν 2958, 2929, 1666, 1512, $1460 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.67(\mathrm{~s}, 1 \mathrm{H}), 7.26(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.20(\mathrm{~d}, J=8.8 \mathrm{~Hz}$, $1 \mathrm{H}), 4.03(\mathrm{~s}, 3 \mathrm{H}), 2.82-2.72(\mathrm{~m}, 1 \mathrm{H}), 2.48(\mathrm{~s}, 3 \mathrm{H}), 2.23(\mathrm{ddd}, J=$ $13.6,12.0,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.10-1.99(\mathrm{~m}, 1 \mathrm{H}), 1.97-1.70(\mathrm{~m}, 4 \mathrm{H}), 1.64$ $(\mathrm{s}, 3 \mathrm{H}), 1.61-1.51(\mathrm{~m}, 1 \mathrm{H}), 1.39(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 194.9,138.9,136.8,130.3,128.9,127.5,123.6,121.9,110.3$, $55.9,50.4,35.5,31.3,28.7,25.4,23.6,22.2,21.6,20.9$; HRMS (EITOF) Calcd for $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{NO}[\mathrm{M}]^{+}: 281.1780$, found 281.1782.
($3 a * R, 9 a * R$)-Diethyl-4,4-dimethyl-9-oxo-3a,4,9,9a-tetrahydro-1H-cyclopenta[b]naphthalene-2,2(3H)-dicarboxylate (3I). Prepared according to the general procedure employing $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{~S}_{2} \mathrm{O}_{8}(0.2077 \mathrm{~g}$, $0.90 \mathrm{mmol}), 4 \AA \mathrm{MS}(0.1470 \mathrm{~g}), \mathrm{Ru}(\mathrm{bpy})_{3}\left(\mathrm{PF}_{6}\right)_{2}(0.0042 \mathrm{~g}, 0.005$ $\mathrm{mmol}), 2 \mathrm{l}(0.1393 \mathrm{~g}, 0.293 \mathrm{mmol})$ and $\mathrm{MeOH}(6 \mathrm{~mL})$. After 17 h , the reaction was diluted with $\mathrm{Et}_{2} \mathrm{O}$ and passed through a short pad of silica using $\mathrm{Et}_{2} \mathrm{O}$. The filtrate was concentrated in vacuo. The crude mixture was monitored by ${ }^{1} \mathrm{H}$ NMR ($d r=1: 2$), and then purified by flash column chromatography using $\mathrm{PE} / \mathrm{EtOAc}(20: 1)$ as the eluent to give 31 and $31^{\prime}(0.0351 \mathrm{~g}, 0.10 \mathrm{mmol}, 33 \%$ yield, $d r=1: 2)$ as a colorless oil. IR ν 2977, 2900, 1731, 1681, $1264 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.96(\mathrm{dd}, J=8.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.54(\mathrm{td}, J=8.0,1.6 \mathrm{~Hz}, 1 \mathrm{H})$, $7.38(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.35-7.27(\mathrm{~m}, 1 \mathrm{H}), 4.27-4.15(\mathrm{~m}, 2 \mathrm{H})$, 4.12-4.01 (m, 2H), 3.19-3.12 (m, 1H), 2.79-2.73 (m, 2H), 2.53$2.41(\mathrm{~m}, 1 \mathrm{H}), 2.40-2.30(\mathrm{~m}, 1 \mathrm{H}), 1.84(\mathrm{t}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.46(\mathrm{~s}$, $3 \mathrm{H}), 1.33(\mathrm{~s}, 3 \mathrm{H}), 1.25(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.15(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 199.5,172.4,171.5,149.6,134.1$, 130.4, 127.8, 126.7, 125.8, 61.7, 61.5, 58.9, 50.6, 47.6, 37.2, 36.6, 35.5, 34.1, 26.7, 14.0, 13.9; HRMS (EI-TOF) Calcd for $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{O}_{5}[\mathrm{M}]^{+}$: 358.1780, found 358.1771 .
($3 a * S, 9 a * R$)-Diethyl-4,4-dimethyl-9-oxo-3a,4,9,9a-tetrahydro-1H-cyclopenta[b]naphthalene-2,2(3H)-dicarboxylate (3I'). IR ν 2970, 2934, 1730, 1693, 1258, $1063 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 8.01(\mathrm{dd}, J=8.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.57-7.50(\mathrm{~m}, 1 \mathrm{H}), 7.47(\mathrm{~d}, J$ $=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.34-7.27(\mathrm{~m}, 1 \mathrm{H}), 4.29-4.12(\mathrm{~m}, 4 \mathrm{H}), 2.97-2.79(\mathrm{~m}$, $2 \mathrm{H}), 2.65(\mathrm{dd}, J=12.8,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.45(\mathrm{dd}, J=14.0,10.4 \mathrm{~Hz}, 1 \mathrm{H})$, $2.36-2.25(\mathrm{~m}, 1 \mathrm{H}), 2.14-2.05(\mathrm{~m}, 1 \mathrm{H}), 1.44(\mathrm{~s}, 3 \mathrm{H}), 1.31-1.22(\mathrm{~m}$, $9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta$ 198.4, 172.5, 172.1, 153.2, 133.7, 131.8, 127.2, 126.4, 126.2, 61.7, 61.6, 57.5, 51.50, 48.4, 37.5, 35.2, 33.6, 28.7, 23.2, 14.04, 14.00; HRMS (EI-TOF) Calcd for $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{O}_{5}[\mathrm{M}]^{+}: 358.1780$, found 358.1771 .
($3 a * R, 9 a * R$)-3,9,9-Trimethyl-3,3a,9,9a-tetrahydro-1H-cyclopenta[b]naphthalen-4(2H)-one (3m). ${ }^{2}$ Prepared according to the general procedure employing $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{~S}_{2} \mathrm{O}_{8}(0.2068 \mathrm{~g}, 0.90 \mathrm{mmol})$, $4 \AA \mathrm{MS}(0.1042 \mathrm{~g}), \mathrm{Ru}(\mathrm{bpy})_{3}\left(\mathrm{PF}_{6}\right)_{2}(0.0041 \mathrm{~g}, 0.005 \mathrm{mmol}), 2 \mathrm{~m}$ $(0.1013 \mathrm{~g}, 0.294 \mathrm{mmol})$ and $\mathrm{MeOH}(6 \mathrm{~mL})$. After 17 h , the reaction was diluted with $\mathrm{Et}_{2} \mathrm{O}$ and passed through a short pad of silica using $\mathrm{Et}_{2} \mathrm{O}$. The filtrate was concentrated in vacuo. The crude mixture was monitored by ${ }^{1} \mathrm{H}$ NMR ($d r=2.5: 1$), and then purified by flash column chromatography using $50: 1 \mathrm{PE} / \mathrm{EtOAc}$ as the eluent to give 3 m and $3 \mathrm{~m}^{\prime}(0.0477 \mathrm{~g}, 0.209 \mathrm{mmol}, 71 \%$ yield) as a white solid. IR $\nu 2962$, 2871, 1691, 1604, 1462, $1227 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 7.99 (dd, $J=7.6,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.54-7.48(\mathrm{~m}, 1 \mathrm{H}), 7.46(\mathrm{dd}, J=8.0$, $1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.31-7.24(\mathrm{~m}, 1 \mathrm{H}), 2.45-2.30(\mathrm{~m}, 1 \mathrm{H}), 2.25(\mathrm{dd}, J=$ $14.0,8.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.21-2.11(\mathrm{~m}, 1 \mathrm{H}), 2.02-1.90(\mathrm{~m}, 1 \mathrm{H}), 1.86-1.76$ $(\mathrm{m}, 1 \mathrm{H}), 1.69-1.56(\mathrm{~m}, 1 \mathrm{H}), 1.39(\mathrm{~s}, 3 \mathrm{H}), 1.38-1.30(\mathrm{~m}, 1 \mathrm{H}), 1.26$ $(\mathrm{s}, 3 \mathrm{H}), 1.24(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 200.1, 153.7, 133.3, 132.5, 127.0, 126.3, 126.1, 55.8, 53.3, 37.7, 33.4, 31.7, 28.6, 24.7, 23.2, 21.5; HRMS (EI-TOF) Calcd for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{O}$ $[\mathrm{M}]^{+}: 228.1514$, found 228.1516 .
($3 a * R, 9 a * S$)-3,9,9-Trimethyl-3,3a,9,9a-tetrahydro-1H-cyclopenta[b]naphthalen-4(2H)-one (3m'). ${ }^{13}$ IR ν 2958, 2870, 1678, 1600, 1455, $1248 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.86$ (dd, $J=$ $7.6,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.51(\mathrm{td}, J=8.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{~d}, J=7.2 \mathrm{~Hz}$, $1 \mathrm{H}), 7.30(\mathrm{td}, J=7.6,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.66(\mathrm{dd}, J=8.4,5.2 \mathrm{~Hz}, 1 \mathrm{H})$, $2.47-2.36(\mathrm{~m}, 1 \mathrm{H}), 2.24-2.11(\mathrm{~m}, 1 \mathrm{H}), 1.87-1.80(\mathrm{~m}, 1 \mathrm{H}), 1.77-$ $1.70(\mathrm{~m}, 1 \mathrm{H}), 1.43(\mathrm{~s}, 3 \mathrm{H}), 1.25(\mathrm{~s}, 3 \mathrm{H}), 1.20(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 3 \mathrm{H})$, 1.17-1.01 (m, 2H); ${ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 201.9, 150.2, 133.4, 132.0, 127.4, 126.3, 125.3, 55.7, 50.4, 40.6, 36.0, 34.6, 34.1, 29.4, 26.1, 21.4; HRMS (EI-TOF) Calcd for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{O}\left[\mathrm{M}^{+}\right.$: 228.1514, found 228.1512.
($4 a * R, 9 a * R$)-10,10-Dimethyl-1,3,4,4a,9a,10-hexahydroanthra-cen-9(2H)-one (3n). Prepared according to the general procedure employing $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{~S}_{2} \mathrm{O}_{8}(0.2129 \mathrm{~g}, 0.93 \mathrm{mmol}), 4 \AA \mathrm{MS}(0.1059 \mathrm{~g})$, $\mathrm{Ru}(\mathrm{bpy})_{3}\left(\mathrm{PF}_{6}\right)_{2}(0.0042 \mathrm{~g}, 0.005 \mathrm{mmol}), 2 \mathrm{n}(0.0957 \mathrm{~g}, 0.278 \mathrm{mmol})$ and $\mathrm{MeOH}(6 \mathrm{~mL})$. After 17 h , the reaction was diluted with $\mathrm{Et}_{2} \mathrm{O}$ and passed through a short pad of silica using $\mathrm{Et}_{2} \mathrm{O}$. The filtrate was concentrated in vacuo. The crude mixture was monitored by ${ }^{1} \mathrm{H}$ NMR ($d r$ unknown), and then purified by flash column chromatography using 60:1 PE/EtOAc as the eluent to give $3 \mathrm{n}(0.0075 \mathrm{~g}, 0.033 \mathrm{mmol}$,
13% yield) as a white solid. IR $\nu 2925,2856,1679,1598,1314 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.05-7.99(\mathrm{~m}, 1 \mathrm{H}), 7.55-7.48(\mathrm{~m}$, $2 \mathrm{H}), 7.31-7.26(\mathrm{~m}, 1 \mathrm{H}), 2.54-2.45(\mathrm{~m}, 1 \mathrm{H}), 2.41-2.32 \mathrm{~m}, 1 \mathrm{H})$, $2.07-1.98(\mathrm{~m}, 1 \mathrm{H}), 1.92-1.81(\mathrm{~m}, 2 \mathrm{H}), 1.80-1.71(\mathrm{~m}, 1 \mathrm{H}), 1.42(\mathrm{~s}$, $3 \mathrm{H}), 1.31-1.22(\mathrm{~m}, 4 \mathrm{H}), 1.21(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 199.8,153.2,133.6,130.7,127.3,126.2,125.8,47.5,46.2,37.0,27.1$, 26.9, 26.5, 26.0, 25.7, 25.0; HRMS (EI-TOF) Calcd for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{O}$ $[\mathrm{M}]^{+}: 228.1514$, found 228.1518 .

2-Methoxy-6-methyl-1-phenylhept-5-en-1-one (50). Prepared according to the general procedure employing $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{~S}_{2} \mathrm{O}_{8}(0.2042$ $\mathrm{g}, 0.90 \mathrm{mmol}), 4 \AA \mathrm{MS}(0.0972 \mathrm{~g}), \mathrm{Ru}(\mathrm{bpy})_{3}\left(\mathrm{PF}_{6}\right)_{2}(0.0040 \mathrm{~g}, 0.005$ $\mathrm{mmol})$, $2 \mathrm{o}(0.0914 \mathrm{~g}, 0.289 \mathrm{mmol})$ and $\mathrm{MeOH}(6 \mathrm{~mL})$. After 17 h , the reaction was diluted with $\mathrm{Et}_{2} \mathrm{O}$ and passed through a short pad of silica using $\mathrm{Et}_{2} \mathrm{O}$. The filtrate was concentrated in vacuo and purified by flash column chromatography using 50:1 PE/EtOAc as the eluent to give 50 ($0.0188 \mathrm{~g}, 0.093 \mathrm{mmol}, 32 \%$ yield) as a colorless oil. IR ν 2925, 1694, 1449, $1122 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.03$ (d, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.60-7.54(\mathrm{~m}, 1 \mathrm{H}), 7.46(\mathrm{dd}, J=7.6,7.6 \mathrm{~Hz}, 2 \mathrm{H})$, $5.11(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.44(\mathrm{dd}, J=7.6,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.36(\mathrm{~s}, 3 \mathrm{H})$, 2.28-2.06 (m, 2H), 1.85-1.77 (m, 2H), $1.70(\mathrm{~s}, 3 \mathrm{H}), 1.60(\mathrm{~s}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 200.8,135.2,133.3,133.1,128.63$, 128.59, 123.1, 84.1, 57.8, 33.2, 25.7, 24.0, 17.6; HRMS (EI-TOF) Calcd for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{2}[\mathrm{M}]^{+}$: 232.1463, found 232.1459.
($3 a * R, 9 * R, 9 a *$ S)-9-ethyl-3,3a,9,9a-tetrahydro-1H-cyclopenta[b]-naphthalen-4(2H)-one (3p). ${ }^{13}$ Prepared according to the general procedure employing $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{~S}_{2} \mathrm{O}_{8}(0.2102 \mathrm{~g}, 0.93 \mathrm{mmol}), 4 \AA \mathrm{MS}$ (0.1009 g), $\mathrm{Ru}(\mathrm{bpy})_{3}\left(\mathrm{PF}_{6}\right)_{2}(0.0041 \mathrm{~g}, 0.005 \mathrm{mmol})$, 2p (0.0913 g , $0.276 \mathrm{mmol})$ and $\mathrm{MeOH}(6 \mathrm{~mL})$. After 17 h , the reaction was diluted with $\mathrm{Et}_{2} \mathrm{O}$ and passed through a short pad of silica using $\mathrm{Et}_{2} \mathrm{O}$. The filtrate was concentrated in vacuo. The crude mixture was monitored by ${ }^{1} \mathrm{H}$ NMR $(d r=12: 1)$, and then purified by flash column chromatography using $60: 1 \mathrm{PE} / \mathrm{EtOAc}$ as the eluent to give 3 p $\left(0.0229 \mathrm{~g}, 0.107 \mathrm{mmol}, 39 \%\right.$ yield) as a white solid. ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.05(\mathrm{dd}, J=7.6,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.54-7.49(\mathrm{~m}, 1 \mathrm{H})$, $7.42(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.31(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.99-2.92(\mathrm{~m}, 1 \mathrm{H})$, 2.51 (ddd, $J=13.63,10.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.30-1.66(\mathrm{~m}, 8 \mathrm{H}), 1.48(\mathrm{q}, J$ $=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 0.76(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H})$.
(3a*R, $10 a * R$)-5,10,10-Trimethyl-4-methyle ne-1,2,3,3a,4,5,10,10a-octahydrocyclopenta[b]carbazole (6). According to a known procedure. ${ }^{22}$ To a 50 mL flame-dried Schlenk flask cooled under N_{2}, methyltriphenylphosphonium bromide (0.4307 g , $1.2 \mathrm{mmol})$ THF $(10 \mathrm{~mL})$ and $\mathrm{NaH}(60 \%)(0.0502 \mathrm{~g}, 1.2 \mathrm{mmol})$ was added. The mixture was refluxed for 30 mim and then $3 \mathbf{j}$ dissolved in THF (5 mL) was added dropwise. The mixture was refluxed for another 13 h . Petroleum ether was added and passed through a short pad of silica with $\mathrm{Et}_{2} \mathrm{O}$ as eluent. The filtrate was concentrated and in vacuo and purified by flash column chromatography using PE/EtOAc ($100: 1$) as the eluent to afford $6(0.0843 \mathrm{~g}, 0.3 \mathrm{mmol}, 82 \%$ yield). mp $=104-106{ }^{\circ} \mathrm{C}$; IR ν 2958, 2870, 1625, 1464, $1241 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.89-7.81(\mathrm{~m}, 1 \mathrm{H}), 7.35(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H})$, $7.31-7.23(\mathrm{~m}, 1 \mathrm{H}), 7.17-7.09(\mathrm{~m}, 1 \mathrm{H}), 5.31(\mathrm{~s}, 1 \mathrm{H}), 5.14(\mathrm{~s}, 1 \mathrm{H})$, $3.88(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 3 \mathrm{H}), 2.61-2.48(\mathrm{~m}, 1 \mathrm{H}), 2.11-1.99(\mathrm{~m}, 1 \mathrm{H})$, $1.98-1.74(\mathrm{~m}, 5 \mathrm{H}), 1.73-1.65(\mathrm{~m}, 1 \mathrm{H}), 1.62(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.37$ $(\mathrm{d}, J=3.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 142.2,139.9$, 134.4, 125.0, 124.1, 121.9, 120.8, 118.8, 109.5, 105.6, 56.5, 44.7, 34.7, 32.2, 29.1, 27.5, 24.3, 22.9, 22.8; HRMS (EI-TOF) Calcd for $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{~N}$ $[\mathrm{M}]^{+}: 265.1830$, found 265.1829 .

4,5,10,10-Tetramethyl-1,2,3,5,10,10a-hexahydrocyclopenta[b]carbazole (7). According to a known procedure. ${ }^{23}$ To a 50 mL flamedried Schlenk flask cooled under N_{2}, methylmagnesium bromide (3 M in THF) (0.6 mmol) was added dropwise to a solution of $\mathbf{3} \mathbf{j}$ in THF $(5 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$. The mixture was stirred at room temperature overnight. The mixture was treated with saturated $\mathrm{NH}_{4} \mathrm{Cl}$, The two layers were separated and the aqueous one was extracted with $\mathrm{Et}_{2} \mathrm{O}$ (3 $\times 20 \mathrm{~mL}$). The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated to afford the crude product. The crude product was dissoloved in toluene $(10 \mathrm{~mL})$, and p-toluenesulfonic acid monohydrate ($0.0104 \mathrm{~g}, 0.06 \mathrm{mmol}$) was added under N_{2}. The mixture was refluxed overnight. The mixture was treated with saturated NaHCO_{3} and separated. The aqueous layers was extracted with EtOAc
$(3 \times 20 \mathrm{~mL})$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, concentrated and purified by flash column chromatography using PE/EtOAc (50:1) as eluent to afford $7(0.0830 \mathrm{~g}, 99 \%$ yield) as a slight yellow oil. IR ν 2963, 2844, 1468, $1368 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.80(\mathrm{dd}, J=7.6,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.37-7.31(\mathrm{~m}, 1 \mathrm{H})$, $7.25-7.18(\mathrm{~m}, 1 \mathrm{H}), 7.17-7.09(\mathrm{~m}, 1 \mathrm{H}), 3.73(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 3 \mathrm{H})$, 3.61-3.48 (m, 1H), 2.76-2.62 (m, 1H), 2.61-2.48 (m, 2H), 2.44$2.29(\mathrm{~m}, 1 \mathrm{H}), 2.09-1.95(\mathrm{~m}, 2 \mathrm{H}), 1.63-1.52(\mathrm{~m}, 6 \mathrm{H}), 1.41-1.34(\mathrm{~m}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 142.8,138.2,134.1,125.1$, 120.3, 120.0, 118.41, 118.40, 116.7, 108.9, 35.1, 33.7, 30.5, 29.7, 28.6, 27.3, 22.7, 20.9; HRMS (EI-TOF) Calcd for $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{~N}[\mathrm{M}]^{+}$: 265.1830, found 265.1831.
$(3 a * S, 10 a * R)-5,10,10$-Trimethyl-1,2,3,3a,4,5,10,10aoctahydrocyclopenta[b]carbazole (8). According to a known procedure. ${ }^{24}$ To a 50 mL flame-dried Schlenk flask cooled under N_{2}, $\mathrm{NaBH}_{4}(40.5 \mathrm{mg}, 1.07 \mathrm{mmol})$ and $3 \mathbf{j}(0.0613 \mathrm{~g}, 0.23 \mathrm{mmol}), \mathrm{AlCl}_{3}$ $(0.0800 \mathrm{~g}, 0.60 \mathrm{mmol})$, and THF (6 mL) was added, respectively. The mixture was refluxed for 2 h . When cooled to room temperature, the mixture was quenched by water and extracted by ethyl acetate. The combined organic layers were dried by sodium sulfate, filtered, concentrated and purified by flash chromatography through silica gel to afford $8(0.0569 \mathrm{~g}, 1.0 \mathrm{mmol}, 98 \%$ yield) as a white solid. $\mathrm{mp}=$ $130-131{ }^{\circ} \mathrm{C}$; IR $\nu 3412,2957,2925,1466,1090,736 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.81-7.74(\mathrm{~m}, 1 \mathrm{H}), 7.30(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, $7.23-7.15(\mathrm{~m}, 1 \mathrm{H}), 7.15-7.07(\mathrm{~m}, 1 \mathrm{H}), 3.63(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 3 \mathrm{H}), 3.02$ (ddd, $J=15.6,5.2,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.48-2.36(\mathrm{~m}, 1 \mathrm{H}), 2.18-2.05(\mathrm{~m}$, $1 \mathrm{H}), 2.05-1.94(\mathrm{~m}, 1 \mathrm{H}), 1.94-1.77(\mathrm{~m}, 3 \mathrm{H}), 1.78-1.66(\mathrm{~m}, 1 \mathrm{H})$, $1.59(\mathrm{~s}, 3 \mathrm{H}), 1.51-1.38(\mathrm{~m}, 2 \mathrm{H}), 1.34(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 137.6,135.4,125.5,120.0,119.7,119.5,118.3,108.8,55.3$, 37.7, 34.1, 31.6, 29.5, 29.0, 28.9, 24.1, 23.2, 23.1; HRMS (EI-TOF) Calcd for $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{~N}[\mathrm{M}]^{+}$: 253.1830, found 253.1831.

7-Methyl-1-phenyl-2-((2,2,6,6-tetramethylpiperidin-1-yl)oxy)oct-6-en-1-one (9). To a 50 mL flame-dried Schlenk flask containing $4 \AA$ MS (100 wt \%) cooled under $\mathrm{N}_{2},\left(\mathrm{NH}_{4}\right)_{2} \mathrm{~S}_{2} \mathrm{O}_{8}(0.2101 \mathrm{~g}, 0.90 \mathrm{mmol})$, $\mathrm{Ru}(\mathrm{bpy})_{3}\left(\mathrm{PF}_{6}\right)_{2}(0.0045 \mathrm{~g}, 0.0045 \mathrm{mmol})$, 2a $(0.0993 \mathrm{~g}, 0.30 \mathrm{mmol})$, TEMPO ($0.0469 \mathrm{~g}, 0.30 \mathrm{mmol}$) and $\mathrm{MeOH}(6 \mathrm{~mL})$ were added. The mixture was degassed through three freeze-pump-thaw cycles under N_{2}. The reaction was placed at room temperature and stirred in front of a 18 W compact fluorescent lamp at a distance of 15 cm for 17 h . The reaction was diluted with $\mathrm{Et}_{2} \mathrm{O}$ and filtered through a short pad of silica using $\mathrm{Et}_{2} \mathrm{O}$. The filtrate was concentrated in vacuo and purified by flash chromatography on silica gel using PE/EtOAc (50:1) as eluent to afford $9(0.0221 \mathrm{~g}, 0.06 \mathrm{mmol}, 20 \%$ yield) as a yellow oil. IR ν 2927, 2860, 1685, 1457, $1376 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $8.09(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.55(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{dd}, J=8.0,7.2$ $\mathrm{Hz}, 2 \mathrm{H}), 4.98(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.87(\mathrm{dd}, J=9.2,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.07-$ $1.83(\mathrm{~m}, 4 \mathrm{H}), 1.61(\mathrm{~s}, 3 \mathrm{H}), 1.60-1.54(\mathrm{~m}, 1 \mathrm{H}), 1.52(\mathrm{~s}, 3 \mathrm{H}), 1.51-$ $1.44(\mathrm{~m}, 2 \mathrm{H}), 1.43-13.4(\mathrm{~m}, 2 \mathrm{H}), 1.33-1.14(\mathrm{~m}, 9 \mathrm{H}), 1.03(\mathrm{~s}, 3 \mathrm{H})$, $0.84(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 201.6, 136.1, 132.9, 131.8, 129.3, 128.4, 124.0, 89.7, 59.8, 40.4, 33.9, 32.6, 27.8, 25.6, 24.9, 20.3, 17.6, 17.1; HRMS (EI-TOF) Calcd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{O}$ [M$\left.\mathrm{C}_{9} \mathrm{H}_{19} \mathrm{NO}\right]^{+}$: 214.1358, found 214.1363.
(Z)-tert-Butyldimethyl((1-(4-(trifluoromethyl)phenyl)prop-1-en-1yl)oxy)silane (10). To a 50 mL flame-dried Schlenk flask cooled under $\mathrm{N}_{2}, \mathrm{KH}(0.2092 \mathrm{~g}, 5.0 \mathrm{mmol})$, 1-(4-(trifluoromethyl)phenyl)propan-1one $(0.9680 \mathrm{~g}, 5.0 \mathrm{mmol})$ and THF $(10 \mathrm{~mL})$ was added. The mixture was stirred for 1 h at room temperature and then TBSCl ($0.9123 \mathrm{~g}, 6.0$ mmol) was added. The mixture was stirred overnight and filtered through a short pad of silica gel, concentrated and purified by flash column chromatography using petroleum ether as eluent to afford 10 $(1.4131 \mathrm{~g}, 4.47 \mathrm{mmol}, 93 \%$ yield) as a colorless oil. IR $\nu 2934,2861$, 1324, 1127, 1067, $841 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.54$ (s, $4 \mathrm{H}), 5.32(\mathrm{q}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.76(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.00(\mathrm{~s}, 9 \mathrm{H})$, $-0.03(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 149.0,143.3,129.3(\mathrm{q}$, $J=32.4 \mathrm{~Hz}), 125.7,125.0(\mathrm{q}, J=3.7 \mathrm{~Hz}), 123.0,108.1,25.8,18.3$, 11.8, $-4.0 ;{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-62.4$; HRMS (EI-TOF) Calcd for $\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{OSiF}_{3}[\mathrm{M}]^{+}$: 316.1470, found 316.1467.

2-((tert-butyldimethylsilyl)peroxy)-1-(4-(trifluoromethyl)phenyl)-propan-1-one (11). To a 50 mL flame-dried Schlenk flask cooled under O_{2} balloon, (Z)-tert-butyldimethyl((1-(4-(trifluoromethyl)-
phenyl)prop-1-en-1-yl)oxy) silane ($0.1264 \mathrm{~g}, 0.4 \mathrm{mmol})$, Ru$(\mathrm{bpy})_{3}\left(\mathrm{PF}_{6}\right)_{2}(0.0037 \mathrm{~g}, 0.004 \mathrm{mmol})$ and $\mathrm{MeCN}(8 \mathrm{~mL})$ was added. The reaction was placed at room temperature and stirred in front of a 18 W compact fluorescent lamp at a distance of 15 cm for 8 h. The reaction was diluted with $\mathrm{Et}_{2} \mathrm{O}$ and passed through a short pad of silica using $\mathrm{Et}_{2} \mathrm{O}$. The filtrate was concentrated and in vacuo and purified by flash chromatography on silica gel to afford 11 (0.1136 g , 82% yield) as a colorless oil. IR $\nu 2934,2860,1323,1133 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.18(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.72(\mathrm{~d}, J=8.0$ $\mathrm{Hz}, 2 \mathrm{H}), 5.14(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.47(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.85(\mathrm{~s}$, $9 \mathrm{H}), 0.10(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 198.5,138.1,134.2$ (d, $J=32.6 \mathrm{~Hz}$), 129.3, $125.4(\mathrm{q}, J=3.7 \mathrm{~Hz}), 84.0,26.0,25.7,18.1$, $15.5,-6.0 ;{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-63.2$; HRMS (ESI) Calcd for $\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{~F}_{3} \mathrm{O}_{3} \mathrm{Si}[\mathrm{M}-\mathrm{H}]^{-}: 347.1290$, found 347.1288.
$(3 a * R, 10 a * S)-5,10,10$-Trimethyl-1,2,3,3a,10,10a-hexahydrocyclopenta[b]carbazol-4(5H)-one (3j'). Prepared according to a general procedure using $2 \mathbf{j}(Z / E 4: 1,0.0963 \mathrm{~g}, 0.25 \mathrm{mmol})$, $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{~S}_{2} \mathrm{O}_{8}(0.2102 \mathrm{~g}, 0.92 \mathrm{mmol}), 4 \AA \mathrm{MS}(0.0963 \mathrm{~g})$, $\mathrm{Ru}(\text { bpy })_{3}\left(\mathrm{PF}_{6}\right)_{2}(0.0041 \mathrm{~g}, 0.005 \mathrm{mmol}), \mathrm{MeOH}(6 \mathrm{~mL})$. After 17 h, the reaction was diluted with $\mathrm{Et}_{2} \mathrm{O}$ and passed through a short pad of silica using $\mathrm{Et}_{2} \mathrm{O}$. The filtrate was concentrated in vacuo. The crude mixture was monitored by ${ }^{1} \mathrm{H} \operatorname{NMR}(d r=4: 1)$ and then purified by flash column chromatography using $\mathrm{PE} / \mathrm{EtOAc}(50: 1)$ as the eluent to give $3 \mathbf{j}$ and $3 \mathbf{j}^{\prime}$ (total: $0.0681 \mathrm{~g}, 0.25 \mathrm{mmol}, 99 \%$ yield, $4 / 1 \mathrm{dr}$) as white solids.
$3 \mathrm{j}^{\prime}: \mathrm{mp}=86-88^{\circ} \mathrm{C}$; IR $\nu 2957,2926,1653,1467,1053,742 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.90(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.40-7.33$ $(\mathrm{m}, 2 \mathrm{H}), 7.11(\mathrm{ddd}, J=8.1,6.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.06(\mathrm{~s}, 3 \mathrm{H}), 3.06-3.01$ (m, 1H), 2.53 (ddd, $J=13.2,7.6,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.26-2.18(\mathrm{~m}, 1 \mathrm{H})$, $1.89-1.75(\mathrm{~m}, 2 \mathrm{H}), 1.68(\mathrm{~s}, 3 \mathrm{H}), 1.66-1.60(\mathrm{~m}, 2 \mathrm{H}), 1.54(\mathrm{~s}, 3 \mathrm{H})$, 1.46-1.37 (m, 1H); ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 194.0, 140.4, 133.9, 128.1, 126.0, 124.3, 123.1, 119.7, 110.5, 55.0, 49.5, 34.8, 32.5, 31.5, 28.0, 27.5, 26.7, 22.4; HRMS (EI-TOF) Calcd for $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{NO}$ $[\mathrm{M}]^{+}: 267.1623$, found 267.1626.

- ASSOCIATED CONTENT

(s) Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.joc.6b01016.

Characterization data for all new compounds. (PDF)

AUTHOR INFORMATION

Corresponding Author

*E-mail: luzhan@zju.edu.cn.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

We are grateful for the financial support from the National 973 Program (2015CB856600), NSFC (21472162), the "Thousand Youth Talents Plan".

REFERENCES

(1) (a) Clayden, J.; Kenworthy, M. N. Org. Lett. 2002, 4, 787. (b) Thoison, O.; Cuong, D. D.; Gramain, A.; Chiaroni, A.; Hung, N. V.; Sévenet, T. Tetrahedron 2005, 61, 8529. (c) Fiorentino, A.; D'Abrosca, B.; Pacifico, S.; Natale, A.; Monaco, P. Phytochemistry 2006, 67, 971. (d) Fiorentino, A.; D'Abrosca, B.; Izzo, A.; Pacifico, S.; Monaco, P. Tetrahedron 2006, 62, 3259. (e) Isaka, M.; Srisanoh, U.; Choowong, W.; Boonpratuang, T. Org. Lett. 2011, 13, 4886. (f) Zhang, J.; Yang, J.; Liao, Y.; Yang, X.; Ma, J.; Xiao, Q.; Yang, L.; Xu, G. Org. Lett. 2014, 16, 4912. (g) Yang, X.; Li, M.; Liu, X.; Ferreira, D.; Ding, Y.; Zhang, J.; Liao, Y.; Qin, H.; Xu, G. J. Nat. Prod. 2015, 78, 885.
(2) (a) Snider, B. B.; Kwon, T. J. Org. Chem. 1990, 55, 4786. (b) Snider, B. B.; Kwon, T. J. Org. Chem. 1992, 57, 2399.
(3) For selected reviews on visible light photocatalysis in organic transformations, see: (a) Yoon, T. P.; Ischay, M. A.; Du, J. Nat. Chem. 2010, 2, 527. (b) Narayanam, J. M. R.; Stephenson, C. R. J. Chem. Soc. Rev. 2011, 40, 102. (c) Teplý, F. Collect. Czech. Chem. Commun. 2011, 76, 859. (d) Xuan, J.; Xiao, W. Angew. Chem., Int. Ed. 2012, 51, 6828. (e) Prier, C. K.; Rankic, D. A.; MacMillan, D. W. C. Chem. Rev. 2013, 113, 5322. (f) Schultz, D. M.; Yoon, T. P. Science 2014, 343, 985. (g) Wang, C.; Lu, Z. Org. Chem. Front. 2015, 2, 179.
(4) For reviews on visible light-promoted cycloadditions, see: (a) Yoon, T. P. ACS Catal. 2013, 3, 895. (b) Xuan, J.; Lu, L.; Chen, J.; Xiao, W. Eur. J. Org. Chem. 2013, 6755. For examples on visible light-promoted [4 + 2] cycloaddition reactions, see: (c) Lemieux, V.; Branda, N. R. Org. Lett. 2005, 7, 2969. (d) Chen, Y.; Steinmetz, M. G. J. Org. Chem. 2006, 71, 6053. (e) Hurtley, A. E.; Cismesia, M. A.; Ischay, M. A.; Yoon, T. P. Tetrahedron 2011, 67, 4442. (f) Lin, S.; Ischay, M. A.; Fry, C. G.; Yoon, T. P. J. Am. Chem. Soc. 2011, 133, 19350. (g) Lin, S.; Padilla, C. E.; Ischay, M. A.; Yoon, T. P. Tetrahedron Lett. 2012, 53, 3073. (h) Yuan, Z.; Wang, Q.; Zheng, A.; Zhang, K.; Lu, L.-Q.; Tang, Z.; Xiao, W. Chem. Commun. 2016, 52, 5128.
(5) Wang, C.; Ren, X.; Xie, H.; Lu, Z. Chem. - Eur. J. 2015, 21, 9676.
(6) For examples on visible light photocatalytic reactions using silyl enols as radical trappers, see: (a) Pham, P. V.; Nagib, D. A.; MacMillan, D. W. C. Angew. Chem., Int. Ed. 2011, 50, 6119. (b) Zhao, G.; Yang, C.; Guo, L.; Sun, H.; Chen, C.; Xia, W. Chem. Commun. 2012, 48, 2337. (c) Yasu, Y.; Koike, T.; Akita, M. Chem. Commun. 2012, 48, 5355.
(7) Pearson, W. H.; Lin, K. C.; Poon, Y. F. J. Org. Chem. 1989, 54, 5814.
(8) Lin, M.; Das, A.; Liu, R. S. J. Am. Chem. Soc. 2006, 128, 9340.
(9) For an example on using $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$ as an oxidant to oxidize the excited state of $\mathrm{Ru}(\mathrm{bpy}){ }_{3}{ }^{2+}$, see: Dai, C.; Meschini, F.; Narayanam, J. M. R.; Stephenson, C. R. J. J. Org. Chem. 2012, 77, 4425.
(10) For an example on alkylation of aldehydes using iron-based visible light photosensitizer, see: Gualandi, A.; Marchini, M.; Mengozzi, L.; Natali, M.; Lucarini, M.; Ceroni, P.; Cozzi, P. G. ACS Catal. 2015, 5, 5927.
(11) (a) Fagnoni, M.; Dondi, D.; Ravelli, D.; Albini, A. Chem. Rev. 2007, 107, 2725. For an example on visible light-promoted Saegusatype reaction by using oxygen as a terminal oxidant, see: (b) Zhang, J.; Wang, L.; Liu, Q.; Yang, Z.; Huang, Y. Chem. Commun. 2013, 49, 11662.
(12) Tzirakis, M. D.; Alberti, M. N.; Orfanopoulos, M. Org. Lett. 2011, 13, 3364.
(13) Gribkov, D. V.; Hultzsch, K. C.; Hampel, F. J. Am. Chem. Soc. 2006, 128, 3748.
(14) Ganton, M. D.; Kerr, M. A. Org. Lett. 2005, 7, 4777.
(15) Sechi, M.; Derudas, M.; Dallocchio, R.; Dessì, A.; Bacchi, A.; Sannia, L.; Carta, F.; Palomba, M.; Ragab, O.; Chan, C.; Shoemaker, R.; Sei, S.; Dayam, R.; Neamati, N. J. Med. Chem. 2004, 47, 5298.
(16) Shang, R.; Ilies, L.; Nakamura, E. J. Am. Chem. Soc. 2015, 137, 7660.
(17) Qiu, Y.; Zhu, X.; Li, Y.; He, Y.; Yang, F.; Wang, J.; Hua, H.; Zheng, L.; Wang, L.; Liu, X.; Liang, Y. Org. Lett. 2015, 17, 3694.
(18) Ito, H.; Ohmiya, H.; Sawamura, M. Org. Lett. 2010, 12, 4380.
(19) Chen, B.; Metera, K.; Sleiman, H. F. Macromolecules 2005, 38, 1084.
(20) Crooks, P. A.; Dwoshin, L.; Xu, R.; Ayers, J. T. U.S. Pat. Appl. Publ., 20030225142.
(21) Wu, B.; Li, K.; Toy, P. H. Synlett 2012, 23, 2564.
(22) Hu, G.; Xu, J.; Li, P. Org. Lett. 2014, 16, 6036.
(23) Friedfeld, M. R.; Shevlin, M.; Margulieux, G. W.; Campeau, L. C.; Chirik, P. J. J. Am. Chem. Soc. 2016, 138, 3314.
(24) Ono, A.; Suzuki, N.; Kamimura, J. Synthesis 1987, 8, 736.

[^0]: Special Issue: Photocatalysis
 Received: May 2, 2016
 Published: July 8, 2016

